Synthesis of Hollow Carbon Hemispheres in the Magnesium Carbonate-Metallic Li System with the Help of CHBr3

Article Preview

Abstract:

Hollow carbon hemispheres (HCHs) were synthesized at 500 oC in the magnesium carbonate-metallic Li system with the help of CHBr3. The product was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). XRD and electron diffraction (ED) pattern results showed that HCHs were graphite phase and polycrystalline. By FESEM and TEM observation, the diameters of the HCHs were in the range of 200-900 nm. The shell of the HCHs was single-layer and their thickness was about 31 nm. The formation mechanism of HCHs with the help of CHBr3 was discussed. Besides, the effect of reaction temperature and dosage of CHBr3 on the morphology of HCHs was studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-109

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley: Nature Vol. 318 (1985), p.162.

Google Scholar

[2] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[3] A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum and T.W. Ebbesen: Nature Vol. 388 (1997), p.451.

DOI: 10.1038/41284

Google Scholar

[4] T. Nakamura, Y. Yamada and K. Yano: Micropor. Mesopor. Mater. Vol. 117 (2009), p.478.

Google Scholar

[5] H. -T. Kim, D.J. You, H. -K. Yoon, S.H. Joo, C. Pak, H. Chang and I. -S. Song: J. Power Sources Vol. 180 (2008), p.724.

Google Scholar

[6] W. Wang, K. Yang, J. Gaillard, P.R. Bandaru and A.M. Rao: Adv. Mater. Vol. 20 (2008), p.179.

Google Scholar

[7] R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben and J.L. Blackburn: Adv. Mater. Vol. 21 (2009), p.3210.

DOI: 10.1002/adma.200803551

Google Scholar

[8] S.B. Yang, X.L. Feng, L.J. Zhi, Q. Cao, J. Maier and K. Müllen: Adv. Mater. Vol. 21 (2009), p.1.

Google Scholar

[9] P. Karandikar, K.R. Patil, A. Mitra, B. Kakade and A.J. Chandwadkar: Micropor. Mesopor. Mater. Vol. 98 (2007), p.189.

Google Scholar

[10] J.F. Lin, V. Kamavaram and A.M. Kannan: J. Power Sources Vol. 195 (2010), p.466.

Google Scholar

[11] Y.H. Ng, S. Ikeda, T. Harada, T. Sakata, H. Mori, A. Takaoka and M. Matsumura: Langmuir Vol. 24 (2008), p.6307.

Google Scholar

[12] M. Kim, S.B. Yoon, K. Sohn, J.Y. Kim, C. -H. Shin, T. Hyeon and J. -S. Yu: Micropor. Mesopor. Mater. Vol. 63 (2003), p.1.

Google Scholar

[13] Z.H. Wen, Q. Wang, Q. Zhang and J.H. Li: Electrochem. Commun. Vol. 9 (2007), p.1867.

Google Scholar

[14] Z.X. Yan, H. Meng, L. Shi, Z.H. Li and P.K. Shen: Electrochem. Commun. Vol. 12 (2010), 689.

Google Scholar

[15] Z.X. Yan, Z.F. Hu, C. Chen, H. Meng, P.K. Shen, H.B. Ji and Y.Z. Meng: J. Power Sources Vol. 199 (2010), 7146.

Google Scholar

[16] Z.S. Lou, Q.W. Chen, W. Wang, Y.T. Qian and Y.F. Zhang: Angew. Chem. Int. Ed. Vol. 115 (2003), 4539.

Google Scholar

[17] J.X. Huang, Y. Xie, B. Li and Y.T. Qian: Adv. Mater. Vol. 12 (2000), p.808.

Google Scholar

[18] J.F. Chen, W. Qian, Y. Ye and Q.W. Chen: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.1472.

Google Scholar

[19] W. Qian, L.Z. Wei, F.Y. Cao and Q.W. Chen: Carbon Vol. 44 (2006), p.1303.

Google Scholar