Shared Parts Latent Topic Model for Image Classification

Article Preview

Abstract:

This paper addresses the problem of accurately classifying image categories without any human interaction. A shared parts latent topic model is presented to share mixture components between categories. Different categories share the similar parts which make the model more accurate. As the number of components is unknown and is to be inferred from the train set, the Dirichlet process is introduced into the model to provide a nonparametric prior for the number of mixture components within each category. Gaussian mixture model is adopted to present the object color feature and the Wishart distribution is applied to estimate the parameters of object shape feature. A number of classification experiments are used to verify the success of our model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Pages:

1257-1262

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Monary, D. Gatica-Perez: PLSA-based image auto-annotation: constraining the latent space. Proceedings of the 12th annual ACM international conference on multimedia, pp.348-351, (2004).

DOI: 10.1145/1027527.1027608

Google Scholar

[2] D. Blei, A. Ng, M. Jordan: Latent dirichlet allocation. Journal of Machine Learing Research, pp.993-1022, (2003).

Google Scholar

[3] C. Dance, J. Williamowski, L. Fan, C. Bray, G. Csurka: Visual categorization with bags of keypoints. ECCV workshop on statistical learning in computer vision, (2004).

Google Scholar

[4] F. Jurie, B. Triggs: Creating efficient codebooks for visual recognition. IEEE international conference on computer vision, pp.604-610, (2005).

DOI: 10.1109/iccv.2005.66

Google Scholar

[5] F. Li, P. Perona: A bayesian hierarchical model for learning natural scene categories. CVPR, pp.524-531(2005).

Google Scholar

[6] C. Li, F. Li: Spatially coherent latent topic model for concurrent object segmentation and classificaton. Proceedings of IEEE International Conferenct on Computer Vision, pp.1-8, (2007).

DOI: 10.1109/iccv.2007.4408965

Google Scholar

[7] L. Diane, V. Jakob, J. Frederic: Category level object segmentation by combining bag-of-words models with dirichlet processes and random fields. International Journal Computer Vision, pp.238-253, (2010).

DOI: 10.1007/s11263-009-0245-x

Google Scholar

[8] F. Li, R. Fergus, P. Perona: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. CVPR Workshop on Generative Model Based Vision, (2004).

DOI: 10.1109/cvpr.2004.383

Google Scholar

[9] A. Torralba, K. P. Murphy, W. T. Freeman: Sharing features: Efficient boosting procedures for multiclass object detection. IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, pp.762-769, (2004).

DOI: 10.1109/cvpr.2004.1315241

Google Scholar

[10] J. Shi, J. Malik: Normalized cuts and image segmentation. IEEE Transation Pattern Anal. Mach. Intell., pp.888-905, (2000).

DOI: 10.1109/34.868688

Google Scholar

[11] K. Mikolajczyk, C. Schmid: Scale and affine invariant interest point detectors. International Journal of Computer Vision, pp.63-86, (2004).

DOI: 10.1023/b:visi.0000027790.02288.f2

Google Scholar

[12] J. Matas, O. Chum, M. Urban, T. Pajdla: Robust wide baseline stereo from maximally stable extremal regoins. British Machine Vision Conference, pp.384-393, (2002).

DOI: 10.5244/c.16.36

Google Scholar

[13] D. G. Lowe: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, pp.91-110, (2004).

DOI: 10.1023/b:visi.0000029664.99615.94

Google Scholar

[14] R. Neal: Markov chain samling methods for Diriclet process mixture model. Technical Report 9815, University of Toronto, Department of Staitistics, (1998).

Google Scholar

[15] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin: Bayesian Data Analysis. Chapman & Hall, (2004).

Google Scholar

[16] M. T. Orchard, Bounman: Color quantization of images. IEEE Transations on Signal Processing, pp.2677-2690, (1991).

Google Scholar