[1]
Wang B.L., Han J.C., Zhang X.H., Mechanics of nonhomogeneous materials. 2003, BeiJing: Sicence Press.
Google Scholar
[2]
Daros, C.H., A fundamental solution for SH-waves in a class of inhomogeneous anisotropic media. International Journal of Engineering Science, 2008. 46: 809-817.
DOI: 10.1016/j.ijengsci.2008.02.001
Google Scholar
[3]
Gao, L.M., et al., An analysis of surface acoustic wave propagation in a plate of functionally graded materials with a layered model. Science in China G: Physics, Mechanics&Astronomy, 2008. 51(2): 165-175.
DOI: 10.1007/s11433-008-0022-9
Google Scholar
[4]
Cao X. B, Jing F, Wang Z.Q., Propagation properties of Lamb waves in a functionally graded material plate. Chinese Journal of solid mechanics, 30(1): 35-41.
Google Scholar
[5]
Elmaimouni L., et al., Guided waves in radially graded cylindeers: a polynomial approach. NDT&E International, 2005. 38: 344-353.
DOI: 10.1016/j.ndteint.2004.10.004
Google Scholar
[6]
Qian, Z.H., et al., Propagation behavior of Love waves in a functionally graded half-space with initial stress. International Journal of Solids and Structures, 2009. 46: 1354-1361.
DOI: 10.1016/j.ijsolstr.2008.11.003
Google Scholar
[7]
Shuvalov, A.L., E.L. Clezio, and G. Feuillard, The state-vector formalism and Peano-series solution for modelling guided waves in functionally graded anisotropic piezoelectric plates. International Journal of Engineering Science, 2008. 46: 929-947.
DOI: 10.1016/j.ijengsci.2008.03.007
Google Scholar
[8]
Vollmann, J., et al., Elastodynamic wave propagation in graded materials: Simulations, experiments, phenomena, and applications. Ultrasonics, 2006. 44: 1215-1221.
DOI: 10.1016/j.ultras.2006.05.073
Google Scholar
[9]
Ding T.R., Li C.Z., Ordinary differential equation tutorial. 2004, BeiJing: Higher Education Press.
Google Scholar
[10]
Rose J. L., Ultrasonic waves in solid media. 2004, UK: Cambirdge University Press.
Google Scholar