Simulation of a Wall Jet Flow over a Rectangular Cavity

Article Preview

Abstract:

The simulation of a turbulent wall jet flow over a rectangular cavity is realised by the low Re stress-omega model. FLUENT 6.3 CFD code was used as the solver. The structured grid was built using Gambit 2.3. A preliminary study of a wall jet flow and a wall jet backward facing step interaction has been undertaken to validate the turbulence model. The numerical approach reproduces fairly the experimental results. A wall jet flow over rectangular cavities of different aspect ratios was investigated. The cavity aspect ratio effect on the flow structure evolution, particularly on the reattachment phenomenon, was examined in this paper. The results of this study show that the flow structure is very sensitive to the cavity aspect ratio. The reattachment length in the wall jet incoming flow case is very short compared to that of the boundary layer incoming flow case.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. S. B Zdanski, M. A. Ortega, G. C. R. Nide & Fico, International Communications in Heat and Mass Transfer (2006) Vol. 33 4 pp.458-466.

DOI: 10.1016/j.icheatmasstransfer.2006.01.007

Google Scholar

[2] J. W. Ball, Proc ASCE, J. Hydraulics Division, (1959) 85, pp.81-114.

Google Scholar

[3] S. Crook, R. Kelso & J. Drbik, 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Australia, (2007) pp.429-435.

Google Scholar

[4] C. Noger, Thèse de Doctorat (1999) Université de Poitiers.

Google Scholar

[5] C. KyoungSilk, C. George & P. Seung-O, 4st International conference on computational heat and mass transfer. Paris Cachan, France (2005) 138 pp.17-20.

Google Scholar

[6] L. Larcheveque, P. Comte & O. Labbé, 16éme Congrès Français de Mécanique (2003) Nice.

Google Scholar

[7] K. K. Ahuja & J. Mendoza, NASA (1995) Contractor Report 4653.

Google Scholar

[8] Rossiter, J. E., Aeronautical Research Council Reports and Memoranda (1964) Technical Report 3438.

Google Scholar

[9] V. Sarohia, Thesis of Doctor of Philosophy (1975) California Institute of Technology) Pasadena.

Google Scholar

[10] M. Sheryl, M. Gary Dewar & D. E. Wroblewski Experiments in Fluids (2004) 36 pp.781-804.

Google Scholar

[11] D. C. Wilcox, DCW Industries, Inc. (1998), La Canada, California.

Google Scholar

[12] H. K. Versteeg & W. Malalasekera (1995) First published.

Google Scholar

[13] F. S. Lien & M. A. Leschziner, Computers and fluids (1994) 23 8 pp.983-1004.

Google Scholar

[14] S. V Patankar, Series in computational methods in mechanics and thermal sciences hemisphere Publiching Corporation (1980).

Google Scholar

[15] K. Badri, Thèse de doctorat, École doctorale sciences pour l'ingénieur de Nantes (1993).

Google Scholar

[16] N. Nait Bouda, R. Schiestel, M. Amielh, C. Rey & T. Benabid, International Journal of Heat and Fluid Flow (2008) 29 4 pp.927-944.

DOI: 10.1016/j.ijheatfluidflow.2008.01.002

Google Scholar

[17] Fluent 6. 3 Documentation.

Google Scholar

[18] J. Eriksson, R. I. Karlsson, J. Persson, Experiments in Fluids (1998) 25 pp.50-60.

Google Scholar

[19] E. B. Plentovich, Jr R. L. Stallings & M. B. Tracy (1993), Nasa Technical reports.

Google Scholar

[20] A. Roshko (1955), NACA Technical Note, TN-3448.

Google Scholar