Shape Control for Composite Structures of Photostrictive Actuators Using Topology Optimization Method

Article Preview

Abstract:

This paper aims to present an alternative design method for remote wireless shape control of laminated composite structures using topology optimization. The photostrictive material is introduced to implement the active control of the structure by making use of its photostriction mechanism, which is actually the superposition of photovoltaic effect and converse piezoelectric effect when exposed to the illumination of near ultraviolet light. The finite element formulation including multiphysics effects of photovoltaic, pyroelectric and thermal expansion is developed to model composite structures of ferroelectric materials, based on the Mindlin plate theory of first-order shear deformation. The topology optimization method is used to seek the optimal topologies for material layouts of both the smart actuation and elastic host layers. A typical numerical example is used to demonstrate the feasibility of this method in shape control of composite structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-193

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Fridkin: Photoferroelectrics. Springer, New York, (1979).

Google Scholar

[2] K. Uchino: Photostrictive Effect in (Pb,La)(Zr,Ti)O3. Ferroelectrics, 64, 1(1985), pp.199-208.

DOI: 10.1080/00150198508018721

Google Scholar

[3] H.S. Tzou, and C.S. Chou: Nonlinear opto-electromechanics and photodeformation of optical actuators. Smart Mater. and Struct, 5, 2(1996), pp.230-235.

DOI: 10.1088/0964-1726/5/2/012

Google Scholar

[4] P. Poosanaas, K. Tonooka, and P. Uchino: Photostrictive actuators. Mechatronics 10, 4-5(2000), pp.467-487.

DOI: 10.1016/s0957-4158(99)00073-2

Google Scholar

[5] C.T. Lin, L. Li, J.D. Mcneill, and et al: Photoconductivity of extrinsic ion-doped PLZT ceramics. J. of Luminescence, 60-61, April(1994), pp.170-174.

DOI: 10.1016/0022-2313(94)90122-8

Google Scholar

[6] M. Qin, K. Yao, S. Shannigrahi, and et al: Thickness effects on photoinduced current in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films. J. of Appl. Phys., 101, 014104(2007), pp.1-8.

DOI: 10.1063/1.3159894

Google Scholar

[7] H. Irschik: A Review on Static and Dynamic Shape Control of Structures by Piezoelectric Actuation. Eng. Struct., 24, 1(2002), pp.5-11.

DOI: 10.1016/s0141-0296(01)00081-5

Google Scholar

[8] D.B. Koconis, L.P. Kollar, and G.S. Springer: Shape control of composite plates and shells with embedded actuators II: desired shape specified. J. of Compos. Mater., 28, 5(1994), pp.459-482.

DOI: 10.1177/002199839402800504

Google Scholar

[9] D.C. Sun and L.Y. Tong: Modeling of wireless remote shape control for beams using nonlinear photostrictive actuators. Int. J. Solids and Struct., 44, 1(2007), pp.672-684.

DOI: 10.1016/j.ijsolstr.2006.05.013

Google Scholar

[10] M. Ichiki, Y. Morikawa, Y. Mabune, and et al: Preparation and photo-induced properties of lead lanthanum zirconate titanate multilayers. J. of Phys., D: Appl. Phys., 37, 21(2004), pp.3017-3024.

DOI: 10.1088/0022-3727/37/21/012

Google Scholar

[11] Z. Luo, L.Y. Tong, J.Z. Luo, and et al: Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J. of Comput. Phys., 228, 7(2009), pp.2643-2659.

DOI: 10.1016/j.jcp.2008.12.019

Google Scholar

[12] Q.T. Luo, and L.Y. Tong: Constitutive modeling of photostrictive materials and design optimization of microcantilevers. J. of Intell. Mater. Syst. Struct., 20, 12 (2009), pp.1425-1438.

DOI: 10.1177/1045389x09103224

Google Scholar

[13] Z. Luo, Q.T. Luo, L.Y. Tong, and et al: Shape morphing of laminated composite structures with photostrictive actuators via topology optimization. Compos. Struct., 93, 2(2011), pp.406-418.

DOI: 10.1016/j.compstruct.2010.09.001

Google Scholar

[14] M.P. Bendsøe, O. Sigmund: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin Heidelberg, (2003).

Google Scholar

[15] Z. Kang, and L.Y. Tong: Integrated optimization of material layout and control voltage for piezoelectric laminated plate. J. of Intell. Mater. Syst. Struct., 19, 8(2008), pp.889-903.

Google Scholar

[16] Zhou M, and Rozvany GIN. The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput. Methods Appl. Mech. Eng, 89, 1-3(1991), pp.197-224.

DOI: 10.1016/0045-7825(91)90046-9

Google Scholar

[17] M.P. Bendsøe, O.Sigmund: Material interpolation schemes in topology optimization. Arch. Appl. Mech,. 69, 9-10(1999), pp.635-654.

DOI: 10.1007/s004190050248

Google Scholar

[18] J.N. Reddy: Mechanics of Laminated Composite Plates-Theory and Analysis. CRC Press, Boca Raton, (2004).

Google Scholar

[19] J. Stegman, E. Lund: Discrete material optimization of general composite shell structures. Int, J. Numer. Methods Eng., 62, 14(2005), pp.2009-2027.

DOI: 10.1002/nme.1259

Google Scholar

[20] K. Svanberg: The method of moving asymptotes-a new method for structural optimization. Int, J. Numer. Methods Eng., 24, 2(1987), pp.359-373.

DOI: 10.1002/nme.1620240207

Google Scholar

[21] M. Ichiki, Y. Morikawa, Y. Mabune, and et al: Preparation and photo-induced properties of lead lanthanum zirconate titanate multilayers. J. Phys. D: Appli. Phys., 37, 21(2004), pp.3017-3024.

DOI: 10.1088/0022-3727/37/21/012

Google Scholar