The Investigation of Creep Behavior for NiAl-28Cr-5.5Mo-0.5Hf-0.02wt.%P Alloy at High Temperature

Article Preview

Abstract:

The Microstructure and creep behavior for NiAl-28Cr-5.5Mo-0.5Hf-0.02wt.%P alloy at high temperature have been investigated in this paper. The results reveal that the high temperature creep behavior of the NiAl-28Cr-5.5Mo-0.5Hf-0.02wt.%P alloy is characterized by transient primary creep and dominant steady-state creep as well as ternary creep behavior. The primary creep can be described by Garofalo equation and the steady-state creep can be depicted by Dorn equation. The creep mechanisms are viscous glide of dislocations at lower and middle testing temperatures and dislocation climb at higher temperature. No change of the microstructure for the testing alloy indicates that the creep fracture is controlled by the formation and propagation of cavities and cracks, and the creep fracture behavior obeys Monk man-Grant relationship.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-32

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Miracle D B: The physical and mechanical properties of NiAl. Acta Metallurgica et Materialia, 41, 3(1993), pp.649-684.

DOI: 10.1016/0956-7151(93)90001-9

Google Scholar

[2] Darolia R: NiAl Alloys for High-Temperature Structural Applications. JOM, 43, 3(1991), pp.44-49.

DOI: 10.1007/bf03220163

Google Scholar

[3] Du xinghao, Zhang guangye, Guo jianting: Microstructure and High-Temperature Creep Behavior of NiAl-25at.%Cr Intermetallic Compound. MATERIALS SCIENCE FORUM, Vol.  475/479 (2005), pp.771-774.

DOI: 10.4028/www.scientific.net/msf.475-479.771

Google Scholar

[4] Nicholls JR, Stephenson DJ: High temperature coatings for gas turbines. Intermetallic compounds, Principles and practice, 1995: 489.

Google Scholar

[5] S. Suh, M. Dollar and P. Nash.: Creep in mechanically alloyed NiAl. Materials Science and Engineering A, Vol.192-193, (1995), pp.691-697.

DOI: 10.1016/0921-5093(94)03289-0

Google Scholar

[6] Qi, Y. H. Guo, J. T. Cui, C. Y.: Tensile creep behaviour of NiAl-Cr(Zr) multiphase intermetallic alloy. Materials Science and Technology, 19, 3(2003), pp.399-402.

DOI: 10.1179/026708303225009689

Google Scholar

[7] Parviz Yavari, Farghalli A. Mohamed, and Terence G. Langdona: Creep and substructure formation in an Al-5% Mg solid solution alloy. Acta Metallurgica, 29, 8(1981), pp.1495-1507.

DOI: 10.1016/0001-6160(81)90184-x

Google Scholar

[8] V. Krishnamachari, M.R. Notis: High temperature deformation of polycrystalline NiO and CoO. Acta Metallurgica, 25, 11(1977), pp.1307-1313.

DOI: 10.1016/0001-6160(77)90107-9

Google Scholar

[9] D.L. Yaney and W.D. Nix: Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl. Journal of Materials Sciences, 23, 9(1988), pp.3088-3098.

DOI: 10.1007/bf00551278

Google Scholar

[10] Li M S: The Corrosion of Metals at High Temperatures . Metallurgical Industry Press, Beijing, (2001), p.263.

Google Scholar

[11] W.H. Kowalski, Mikrostrukur and meschanische Eignschaften intermetalliischer NiAl-Cr Leigierungen, Fortschrittberichte VDI Reihe 5: Grund-und Werkstoffe Nr 342. VDI Verlag, Düsseldorf, 1993.

Google Scholar

[12] Guangye Zhang, Xinghao Du, Jianting Guo, Hengqiang Ye: BDT and Creep Behaviors of NiAl-25 at. Pct Cr Alloy at Various Temperatures. J.Mater Science and Technology, 21, 5(2005), pp.641-646.

Google Scholar