Microwave Assisted Synthesis of CuO Nanostructures in Lonic Liquids

Article Preview

Abstract:

The dry chemical method is developed to fabricate CuO nanostructures via microwave assisted irradiation in ionic liquid 1-butyl-3-ethyl imidazolium tetrafluoroborate ([BMIM][BF4]). Both nanoparticles (20 nm in size) and nanorods (10-20 nm in diameter and 100-200 nm in length) of monoclinic CuO were obtained. The as samples were characterized by FTIR, XRD, TEM, SADE. The morphologies of the nanostructures can be controlled by the amount-tuning of NaOH and ionic liquids. The growth mechanism of CuO nanostructures is investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] WANG Li, ZHAO Bin, YUAN ZhongYong: Sci China Ser B-Chem, vol. 50 (2007), pp.63-69.

Google Scholar

[2] Meng Zhang, Xiaodong Xu , Milin Zhang: Materials Letters, vol. 62 (2008), pp.385-388.

Google Scholar

[3] Malandrino G, Finocchiaro S T, Nigro R L, et al. Chem Mater, vol. 16 (2004), pp.559-5561.

Google Scholar

[4] Vijaya Kumar R, Elgamiel R, Diamant Y. Langmuir: vol. 17 ( 2001), pp.1406-1410.

Google Scholar

[5] Jia D Zh, Yu J Q, Xia X. Science bulletin: vol. 43 (1998), pp.172-174.

Google Scholar

[6] Gao X P, Bao J L, Pan G L, et al. J Phys Chem B, vol. 108 (2004), pp.5547-5551.

Google Scholar

[7] Wang W Z, Zhan Y J, Wang G H: Chem Commun, 2001, pp.727-728.

Google Scholar

[8] Malandrino G, Finocchiaro S T, Nigro R L, et al. Chem Mater, vol. 16 (2004), pp.5559-5561.

Google Scholar

[9] Carnes C L, Stipp J, Klabunde K J, et al. Langmuir, vol. 18 (2002), pp.1352-1359.

Google Scholar

[10] Welton T. Chem. Rev., Vol. 99(1999), p.2071-(2083).

Google Scholar

[11] Antonietti M, Kuang D B, Smarsly B, et al. Angew. Chem. Lnt. Ed, Vol. 43(2004), pp.4988-4992.

Google Scholar

[12] Wang L, Zhao B, Chang L, et al. Sci China Ser B-Chem, Vol. 50(2007), pp.224-229.

Google Scholar

[13] Wang J, Cao J M, Fang B Q, et al. Matter. Lett., Vol. 59(2005), pp.1405-1408.

Google Scholar

[14] J.G. Huddleston, H.D. Willauer, R.P. Swatloski: Chem. Commun. vol. 16 (1998), p.1765.

Google Scholar

[15] Y. Zhou, M. Antonietti, J. Am. Chem. Soc. vol. 125 (2003), p.14960.

Google Scholar

[16] L. Cammarata, S.G. Kazarian, P.A. Salter: Phys. Chem. Chem. Phys. 3 (2001) 5192.

Google Scholar

[17] Y.Y. Xu, D.R. Chen, X.L. Jiao, J. Phys. Chem., B, vol. 109 (2005), p.13561.

Google Scholar

[18] Kruk M, Jaroniec M. Chem Mater, vol. 13 (2001), pp.3169-3183.

Google Scholar

[19] Ma J H, Yang H Q, Song, Y Z, et al. Science in China Series E: Technological Sciences, Vol. 52(2009), pp.1264-1272.

Google Scholar

[20] Lyu Y Y, Yi S H, Shon J K, et al. J Am Chem Soc, vol. 126 (2004), p.2310-2311.

Google Scholar