Sepiolite/CuFe2O4 Composite: a Magnetic Absorbent for Removal of Contaminants from Water

Article Preview

Abstract:

The sepiolite and CuFe2O4 were combined to prepare the sepiolite/CuFe2O4 composite. The magnetic composite was characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and vibration sample magnetometer (VSM) and N2 adsorption isotherms. Adsorption characteristics of the composite were examined by using Cu2+ and methylene blue as adsorbates. The results show that CuFe2O4 particles adhere to the surface of sepiolite fiber to form the sepiolite/CuFe2O4 composite which show well characteristic of superparamagnetism and is effective for the removal of Cu2+ or methylene blue. When the mass ratios of sepiolite and CuFe2O4 is 7:3, the saturation and remanence magnetization are 7.140 and 0.0246 A·m2/kg, and coercive force is 0.0180 A/m for magnetic sepiolite. The saturated adsorption capacity for Cu2+ and the removal rate of methylene blue is 15.72 mg/g, 99.48%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

114-119

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. F. Brigatti, L. Medici, L. Poppi: Appl. Clay Sci. Vol. 11(1996), p.43.

Google Scholar

[2] M. F. Brigatti, C. Lugli, L. Poppi: Appl. Clay Sci. Vol. 16(2000), p.45.

Google Scholar

[3] S. Lazarevic, I. Jankovic-Castvan, D. Jovanovic, S. Milonjic, D. Janackovic, R. Petrovic: Appl. Clay Sci. Vol. 37 (2007), p.47.

Google Scholar

[4] S. Kocaoba: Desalination Vol. 244 (2009), p.24.

Google Scholar

[5] Y. Özdemir, M. Dogan, M. Alkan: Microporous Mesoporous Mater.Vol. 96 (2006), p.419.

Google Scholar

[6] M. Dogan, Y. Özdemir, M. Alkan: Dyes Pigm.Vol. 75 (2007), p.701.

Google Scholar

[7] M. Tekbas, N. Bektas, H.C. Yatmaz: Desalination Vol. 249(2009), p.205.

Google Scholar

[8] E. Eren, O. Cubuk, H. Ciftci, B. Eren, B. Caglar: Desalination Vol. 252 (2010), p.88.

DOI: 10.1016/j.desal.2009.10.020

Google Scholar

[9] L.C.A. Oliveira, R.V.R.A. Rios, J.D. Fabris, V. Garg, K. Sapag, R.M. Lago: Carbon Vol. 40 (2002), p.2177.

Google Scholar

[10] L. C. A. Oliveira, D. I. Petkowicz, A. Smaniotto, S. B. C. Pergher: Water Res.Vol. 38 (2004), p.3699.

Google Scholar

[11] L. C. R. Machado, F. W. J. Lima, R. Paniago, J.D. Ardisson, K. Sapag, R.M. Lago: Appl. Clay Sci. Vol. 31 (2006), p.207.

DOI: 10.1016/j.clay.2005.07.004

Google Scholar

[12] X. Peng, Z. Luan, H. Zhang: Chemosphere Vol. 63 (2006), p.300.

Google Scholar

[13] Z. Gao, X. Peng, H. Zhang, Z. Luan, B. Fan: Desalination Vol. 247 (2009), p.337.

Google Scholar

[14] M. Alkan, M. Dogan: Colloid Interface Sci.Vol. 243(2001), p.280.

Google Scholar

[15] K. Demeestere, J. Dewulf, T. Ohno, P: Appl. Catal., B Vol. 61 (2005), p.140.

Google Scholar

[16] J. Hu, I.M.C. Lo, G. Chen: Sep. Purif. Technol.Vol. 56(2007), p.249.

Google Scholar

[17] G. Rytwo, D. Tropp, C. Serban: Appl Clay Sci.Vol. 20(2002), p.273.

Google Scholar