[1]
М{TTP}1052 .Gutman, Mechanochemistry and Corrosion Prevention of Metals[M].Peking: Science Publication,(1989)
Google Scholar
[2]
Th.Magnin,Advance in corrosion-deformation interactions[A],(1996)
Google Scholar
[3]
V.Vignal,N.Mary,C.Valot.etc,Influence of elastic deformation on intiation of pits on duplex stainless stees[J],Electrochemical and solidstate letters, 2004,7 (4):C39-C42
DOI: 10.1149/1.1647995
Google Scholar
[4]
E.M. Gutman,G.Solovioff,D.Eliezer.The Mechanochemical Behavior of Type 316L Stainless Steel[J],Corrosion Science.1996,38(7):1141-1145
DOI: 10.1016/0010-938x(96)00008-x
Google Scholar
[5]
Saburou Kuwano,Takeo Oki,Effect of applied stress on SCC susceptibility and polarization behaviour of SUS316 type stainless steel[J],Zairyo,31:828-833
Google Scholar
[6]
Xiaodong Liu G.S. Frankel,B.Zoofan S.I. Rokhlin,Effect of applied tensile stress on intergranular corrosion of AA2024-T3[J],Corrosion science,2004,46:405-425
DOI: 10.1016/s0010-938x(03)00149-5
Google Scholar
[7]
Xiaodong Liu G.S. Frankel.Effects of compressive stress on localized corrosion in AA2024-T3[J],Corrosion science,(2006)
DOI: 10.1016/j.corsci.2005.12.003
Google Scholar
[8]
P.L.bonora,M.Andrei,corrosion behavior of stressed magnesium alloys[J], Corrosion science, 2002:729-749
DOI: 10.1016/s0010-938x(01)00101-9
Google Scholar
[9]
Koichi Saito,Jiro Kuniya,mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water[J],corrosion science,2001,43: 1751-1766
DOI: 10.1016/s0010-938x(00)00173-6
Google Scholar
[10]
Keiichiro Tohgo,Hiromitsu Suzuki,Yoshinobu Shimamura.etc,Monte Carlo simulation of stress corrosion cracking on a smooth surface of sensitized stainless steel type304,Corrosion Science,2009,51(9):2208-2217
DOI: 10.1016/j.corsci.2009.06.013
Google Scholar
[11]
K.K. Sankaran,R.Perez K.V. Jata.Effects of Pitting Corrosion on the Fatigue Behavior of Aluminum Alloy 7075-T6: Modeling and Experimental Studies[J],Materials Science and Engineering 2001,A297:223-229
DOI: 10.1016/s0921-5093(00)01216-8
Google Scholar
[12]
G.S. Chen K.C. Wan.M.Gao Transition from Pitting to Fatigue Crack Growth modeling of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy[J],Material Science and Engineering, 1996,A219:126-132
DOI: 10.1016/s0921-5093(96)10414-7
Google Scholar
[13]
Ben-Hamua,A.Eliezer E.M. Gutman, Electrochemical behavior of magnesium alloys strained in buffer solutions[J],Electrochimica Acta,2006,52:304–313
DOI: 10.1016/j.electacta.2006.05.009
Google Scholar
[14]
Hiroyuki Iwanaga,Takeo Oki,pit formation in stainless steel under applied stress with or without chamfering[J],Zairyo,35:208-214
Google Scholar
[15]
T.suter,E.G,Webb,H.bohni,R.C. Alkire,pit initiation on stainless steels in 1M NaCl with and without Mechanical stress[J],Journal of the electrochemical society,148(5), B174-B185,(2001)
DOI: 10.1149/1.1360204
Google Scholar
[16]
G.BenHamua,A.Eliezer E.M. Gutman.etc,Mechanoelectrochemical behavior of magnesium alloys [J],Materials Science and Engineering.2006:109–114
DOI: 10.1016/j.msea.2006.01.060
Google Scholar
[17]
A.Eliezer E.M. Gutman,Ya.Unigovski,J.Haddad,G.Ben-Hamua,Mechanoelectrochemical behavior of magnesium alloys[J],Materials Science and Engineering,2006:109–114
DOI: 10.1016/j.msea.2006.01.060
Google Scholar
[18]
Barry C,Syrett.PPR curves-A New Method of Assessing Pitting Corrosion Resistance [J],corrosion,1977:P221-224
DOI: 10.5006/0010-9312-33.6.221
Google Scholar
[19]
Rao sixian, Research on the rule and application of applied stress to corrosion thermodynamics and kinetics of metals[D].Beijing:Ph.D dissertation of Beijing university of aeronautics and astronautics,China,(2007)
Google Scholar
[20]
V.Guillaumin,G.Mankowski,Localized corrosion of 2024-T351 aluminium alloy in chloride media[J],Corrosion science,1999:421-438
DOI: 10.1016/s0010-938x(98)00116-4
Google Scholar