Controlled Synthesis of Hollow TiO2 Nanospheres Templated by Polymeric Micelle with Core-Shell-Corona Architecture

Article Preview

Abstract:

Hollow TiO2 nanospheres have been successfully prepared by templating the polymericmicelles of poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride- b-ethylene oxide) (PS-b-PMAPTAC-b-PEO), which shows a core-shell-corona structure in aqueous solutions. It was found that, in such system, the wall thickness of the hollow TiO2 is fine tuned by varying the concentration of the TiO2 precursor.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

900-904

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, Z. L. Wang, App. Phys. Lett., 2006, 88, 203101.

DOI: 10.1063/1.2203932

Google Scholar

[2] S. Baeck, K. Choi, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, Adv. Mater., 2003, 15, 1269.

Google Scholar

[3] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC, Tokyo 1999.

Google Scholar

[4] Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. AdV. Mater. 2001, 13 (10), 740.

Google Scholar

[5] Cao, A.-M.; Hu, J.-S.; Liang, H.-P.; Wan, L.-J. Angew. Chem., Int. Ed. 2005, 44, 4391.

Google Scholar

[6] Sathyamurthy, S.; Leonard, K. J.; Dabestani, R. T.; Paranthaman, M. P. Nanotechnology 2005, 16, 1960.

Google Scholar

[7] Yan, B.; McNeff, C. V.; Chen, F.; Carr, P. W.; McCormick, A. V. J. Am. Ceram. Soc. 2001, 84 (8), 1721.

Google Scholar

[8] Sun, Y.; Mayer, B.; Xia, Y. AdV. Mater. 2003, 15, 641.

Google Scholar

[9] Jeong, U.; Wang, Y.; Ibisate, M.; Xia, Y. AdV. Funct. Mater. 2005, 15, 1907.

Google Scholar

[10] George, P. P.; Pol, V. G.; Gedanken, A. Nanoscale Res. Lett. 2007, 2, 17.

Google Scholar

[11] Izu, N.; Matsubara, I.; Itoh, T.; Shin, W.; Nishibori, M. Bull. Chem. Soc. Jpn. 2008, 81, 761.

Google Scholar

[12] F. Caruso, R. A. Caruso, H. Mohwald, Science 1998, 282, 1111.

Google Scholar

[13] D. E. Bergbreiter, Angew. Chem., Int. Ed. 1999, 38, 2870

Google Scholar

[14] A. Syoufian, Y. Inoue, M. Yada, K. Nakashima, Mater. Lett. 2007, 61, 1572

Google Scholar

[15] R. K. Rana, Y. Mastai, A. Gedanken, Adv. Mater. 2002, 14, 1414.

Google Scholar

[16] Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K. J. Am. Chem. Soc. 2007, 129, 1534.

Google Scholar

[17] J. J. Liu, D. Liu, Y. Yokoyama, S. Yusa, K. Nakashima, Langmuir, 2009, 25, 739.

Google Scholar

[18] J. J. Liu, A. Yoneda, D. Liu, Y. Yokoyama, S. Yusa, K. Nakashima, Can. J. Chem., 2010, 88, 208.

Google Scholar

[19] J. J. Liu, D. Liu, S. Manickam, Y. Yokoyama, S. Yusa, K. Nakashima, Chem. Lett., 2010, 39, 584.

Google Scholar

[20] A. Khanal, Y. Inoue, M. Yada, and K. Nakashima, J. Am. Chem., Soc. 2007, 129, 1534.

Google Scholar

[21] D. Liu, A. Khanal, K. Nakashima, Y. Inoue, M. Yada, Chem. Lett. 2009, 38(2), 130

Google Scholar

[22] G. K. Li, and C. Z. Zhang, Mater. Lett. 2004, 58, 2768.

Google Scholar