Research on the Electrical Electrochemical Properties of the LiFe0.98Mn0.02(PO4)1-0.02/3Cl0.02/C Cathode Materials

Article Preview

Abstract:

The Mn-Cl co-doped LiFePO4 was succefully synthetized by two-step solid-state reaction. After doping, the Lattice constants shifted while the morphology changed only little, revealing that the properties may not be improved by the slight changed grain size but the crystal structure. The co-doped sample presented a high discharge capacity of 161.1mAhg−1 at 0.1C, 157.7mAhg−1 at 0.5C, 149.1mAhg−1 at 1C, nearly 30mAhg−1 higher than that of the pristine LiFePO4/C respectively. The electrochemical reversibility and cycle stability of co-doped LiFePO4/C were enhanced. Moreover, the Li+ diffusion and exchange current density of that was increased after doped with Mn2+ and Cl- .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

1314-1321

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Ravet , Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier and M. Armand: Journal of Power Sources Vol 97-8 (2001), pp.503-507

DOI: 10.1016/s0378-7753(01)00727-3

Google Scholar

[2] Y. Cui, X.L. Zhao and R.S. Guo: Journal of Alloys and Compounds Vol 490 (2010), p.236–240

Google Scholar

[3] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang and H.G. Kim: Solid State Communications Vol 129 (2004), p.311–314

DOI: 10.1016/j.ssc.2003.10.015

Google Scholar

[4] L. Wang, Y.D. Huang, R.R. Jiang and D.Z. Jia: Electrochimica Acta Vol 52 (2007), p.6778–6783

Google Scholar

[5] Dinesh Rangappa, Koji Sone, Tetsuichi Kudo and Itaru Honma: Journal of Power Sources Vol 195 (2010), p.6167–6171

DOI: 10.1016/j.jpowsour.2009.11.095

Google Scholar

[6] X.G. Yin, K.L. Huang, S.Q. Liu, H.Y. Wang and H. Wang: Journal of Power Sources Vol 195 (2010), p.4308–4312

Google Scholar

[7] Y.C. Chen, J.M. Chen, C.H. Hsu, J.J. Lee, Tsung-Chi Lin, J.W. Yeh and Han C. Shih: Journal of Power Sources Vol 195 (2010), p.6867–6872

Google Scholar

[8] C.S. Sun, Y. Zhang, X.J. Zhang and Z. Zhou: Journal of Power Sources Vol 195 (2010), p.3680–3683

Google Scholar

[9] L. Yang, L.F. Jiao, Y.L. Miao and H.T. Yuan: J Solid State Electrochem Vol 14 (2010), p.1001–1005

Google Scholar

[10] S.-H. Kang and K. Amine: Journal of Power Sources Vol 146 (2005), p.654–657

Google Scholar

[11] W.R. Liu, S.H. Wu and H.S. Sheu: Journal of Power Sources Vol (2005), pp.232-236 [12] X.Z. Liao, Y.S. He, Z.F. Ma, X.M. Zhang and L. Wang: Journal of Power Sources Vol 174 (2007), p.720–725

Google Scholar

[13] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M.Tarascon and C. Masquelier: J. Electrochem. Soc., Vol 152 (2005), p. A913

DOI: 10.1149/1.1884787

Google Scholar

[14] J. Xu and G. Chen: Physica B Vol 405 (2010), p.806

Google Scholar

[15] Tsuyoshi Honma, Kenta Nagamine and Takayuki Komatsu: Ceramics International Vol 36 (2010), p.1139

Google Scholar

[16] A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari and P. Christopher Selvin: J. Phys. Chem. C Vol 114 (2010), p.8099–8107

Google Scholar

[17] S.S. Zhang, K. Xu and T.R. Jow: Electrochimica Acta Vol 49 (2004), p.1057

Google Scholar

[18] Y. Cui, X. Zhao and G. Ruisong: Electrochimica Acta Vol 55(2010), p.922

Google Scholar

[19] A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough: J. Electrochem. Soc. Vol 144 (1997), p.1188

Google Scholar