Microstructure and Electrochemical Properties of La0.75Mg0.25Ni3.5(TiNi3)0.1 Hydrogen Storage Alloys

Article Preview

Abstract:

La0.75Mg0.25Ni3.5(TiNi3)0.1 alloys were prepared by induction melting followed by annealing treatment at 1173Kand 1h,2h,5h,12h,respectively. Alloys structure and electrochemical properties have been studied systematically by X-ray diffraction(XRD) with the Rietveld methold , Electron probe micro-analyzer (EPMA)and electrochemical experiments. Alloys structure analyses showed that all of the alloys mainly consisted of complex phases such as LaNi5 phase (CaCu5-type,SG: P6/mmm), (La ,Mg)2Ni7 phase (Ce2Ni7-type, SG: P63/mmc)and (La,Mg)2Ni7 phase(Gd2Co7-type,SG: R-3m). Annealed treatment was benefited to the formation of (La ,Mg)2Ni7 phase. Annealed time was imprtant for the alloys microstructure, for the alloys with annealed for 1 hour,the microstructure between main phase and TiNi3 phase was three-dimensional network,with the annealed time incresed,the TiNi3 phase became reunite. The microstructure of three-dimensional network was useful for the electrochemical cycle stability of alloys electrodes(S100=87%).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2526-2530

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kadir, T. Sakai, I. Uehara: J. Alloys Compd. Vol.257 (1997),p.115

Google Scholar

[2] K. Kadir,N. Kuriyama, T. Sakai, I. Uehara, and L. Eriksson:J. Alloys Compd. Vol.284 (1999) , p.145

Google Scholar

[3] T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, and M. Kanda:J. Alloys Compd. Vol.311 (2000) , p.5

Google Scholar

[4] H.Hayakawa, E.Akiba, M. Gotoh, T.Kohno: J.Materials Transactions, Vol.46 (2005), p.1393

Google Scholar

[5] S.Yasuoka , Y. Magari, T. Murata, T.Tanaka, J. Ishida, H. Nakamura, T. Nohma, M.Kihara, Y. Baba and H. Teraoka: J. Power Sources.Vol.156, (2006), p.662

DOI: 10.1016/j.jpowsour.2005.05.054

Google Scholar

[6] T. Ozaki, M. Kanemoto, T. Kakeya , Y. Kitano , M. Kuzuhara ,M.Watada , S.Tanase , and T.Sakai :J. Alloys Compd.Vol.446–447 (2007) ,P.620

DOI: 10.1016/j.jallcom.2007.03.059

Google Scholar

[7] F. Li, K. Young, T. Ouchi, and M.A. Fetcenko:J. Alloys Compd.Vol. 471 (2009) ,p.371

Google Scholar

[8] J. Nakamura, Kenji Iwase, H. Hayakawa, Y. Nakamura and E. Akiba: J. Phys. Chem. C. Vol. 113 (2009), p.5853

Google Scholar

[9] A. Férey, F.Cuevas, M. Latroche,B.Knosp,P.Bernard. Electrochimica Acta, Vol.54,(2009),p.1710

DOI: 10.1016/j.electacta.2008.09.069

Google Scholar

[10] Q.G. Zhang M.H. Fang T.Z.Si,F,Fang,D.L,Sun L.Z. Quyang,M.Zhu: J. Phys. Chem. C. Vol. 114 (2010), p.11686

Google Scholar

[11] X.P. Dong, F.X.Lu, L.Y. Yang, Y.H. Zhang, X.L. Wang,J.Mater Chem phys.,Vol.112(2008),p.596

Google Scholar

[12] L.L. Xiao, Y.J. Wang, D.W. Song, L.F. Jiao, H.T. Yuan.Int.J.Hydrogen Energy, Vol.33 (2008), p.3925

Google Scholar

[13] R.V. Denys, B. Riabov, V.A. Yartys, R.G. Delaplane,M Sato.J.Alloys Compd., Vol. 446-447 (2007), p.166

DOI: 10.1016/j.jallcom.2006.12.137

Google Scholar

[14] A.Q. Deng. [D]. Lanzhou: Lanzhou University of technology, (2007)

Google Scholar

[15] Young R A:The Rietveld Method (Oxford University Publications,U. K 1993).

Google Scholar

[16] Faliang Zhang, Yongchun Luo, Jiangping Chen, Ruxu Yan, Long Kang,and Jianhong Chen :J. Power Sources. Vol.150(2005),p.247

Google Scholar

[17] J.J. Reilly, in: Metal hydrides electrode , edtied by J.O. Besenhard,in Handbook of Battery Materials , in, chapter, 7, Wiley-VCH Publishers, (1999)

Google Scholar

[18] Weikang wu. J. Alloys and Compounds, Vol.297(2000),p.206

Google Scholar