Formation of Nano-Textured Silicon Surface Layer (or Nanowires) by Silver Ion-Assisted Etching

Article Preview

Abstract:

To obtain an ultralow surface reflectance and reach broadband antireflection effects,in this paper, silicon nanowires (SiNWs) layer has been fabricated by low-cost and easy-made silver-assisted etching techniques.The morphologies, reflectance and surface recombination of the samples were separately characterized. The ultralow reflectance below 3% from 300 to 800 nm under normal incidence has been realized in the case of ~ 1 μm long SiNWs whose geometry structures approximate to multi-layer gratings stack and the refractive index gradually increases from the top to the bottom of substrate. However, surface recombination of SiNWs deteriorates due to numerous dangling bonds and residual silver. Therefore, a trade-off between antireflection effect and recombination loss is the key to the electronic device.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

265-269

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Parretta, A. Sarnao, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao and A. Wang: Opt. Commun. Vol. 172 (1999), p.139

Google Scholar

[2] H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To and P. Stradins: Appl. Phys. Lett. Vol. 94 (2009), p.231121

Google Scholar

[3] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar and M. Husain: Sol. Energy Mat. Sol. C. Vol. 94 (2010), p.1506

Google Scholar

[4] M. Tao, W. Zhou, H. Yang and L. Chen: Appl. Phys. Lett. Vol. 91 (2007), p.081118

Google Scholar

[5] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang and S. Abbott: Appl. Phys. Lett. Vol. 94 (2009), p.263118

Google Scholar

[6] M. Y. Shen, C. H. Crouch, J. E. Carey and E. Mazur: Appl. Phys. Lett. Vol. 85 (2004), p.5694

Google Scholar

[7] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori and H. Yugami: Appl. Phys. Lett. Vol. 88 (2006), p.201116

Google Scholar

[8] W. Wu, J. Gu, H. Ge, C. Keime and S. Y. Chou: Appl. Phys. Lett. Vol. 83 (2003), p.2268

Google Scholar

[9] L. L. Ma, Y. C. Chou, and N. Jiang: Appl. Phys. Lett. Vol. 88 (2006), p.171907

Google Scholar

[10] H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier and H. M. Branz: Appl. Phys. Lett. Vol. 95 (2009), p.123501

Google Scholar

[11] C. Yang, C. J. Barrelet, F. Capasso and C. M. Lieber: Nano Lett. Vol. 6 (2006), p.2929

Google Scholar

[12] L. T. Canham: Appl. Phys. Lett. Vol. 57 (1990), p.1046

Google Scholar

[13] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong: J. Phys. Chem. C Vol. 112 (2008), p.4444

Google Scholar

[14] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang,Y. Xu, S. T. Lee and J. Zhu: Adv. Funct. Mater. Vol. 16 (2006), p.387

Google Scholar