Characterization of (ENR-50)-Ionic Liquid Based Electrolyte System

Article Preview

Abstract:

Ionic liquid based on imidazolium cation; 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI) has been incorporated with epoxidized natural rubber-50 (ENR-50) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to obtain electrolyte material. Fourier transform infrared spectroscopy (FTIR) spectra showed evidence of complexation between ENR-50, EMITFSI and LiTFSI. Glass transition temperature, Tg displayed an increasing trend with increase in salt concentration. The incorporation of EMITFSI resulted in an increase in ionic conductivity. The increase in ionic conductivity was attributed to the role of ionic liquid which reduced Tg, thus, facilitated ion conduction in the system. The highest ionic conductivity at room temperature was 5.72 ´ 10-4 S cm-1 for sample containing 20 wt% of EMITFSI and 50 wt% of LiTFSI.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

424-427

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Mohamed, N.A. Johari, A.M.M. Ali, M.K. Harun and M.Z.A. Yahya: J. Power Sources Vol 183 (2008), p.351

Google Scholar

[2] I. Razali and W.A.H. Wan Siti Nor: Solid State Science and Technology Vol 15(1) (2007), p.147

Google Scholar

[3] H.S. Kim, R. Idris and S.I. Moon: Bulletin of Electrochemistry Vol 20 (2004), p.465

Google Scholar

[4] J.H. Shin, W.A. Henderson, and S. Passerini: Electrochem. Commun. 5 (2003), p.1016

Google Scholar

[5] D.R. Macfarlane, M. Forsyth, P.C. Howlett, J.M Pringle, J. Sun, G. Annat, W. Neil, and E.I. Izgorodina: Acc. Chem. Res. Vol 40 (2007), p.1165

DOI: 10.1021/ar7000952

Google Scholar

[6] Y.S. Fung and R.Q. Zhou: J. Power Sources, Vol 81 (1999), p.891

Google Scholar

[7] R.C. Agrawal and G.P. Pandey: J. Phys. D:Appl. Phys. Vol 41 (2008), 223001.

Google Scholar

[8] H. Nakajima and H. Ohno: Polymer Vol 46 (2005), p.11499

Google Scholar

[9] M. Morita, T. Shirai, N. Yoshimoto and M. Ishikawa: J. Power Sources Vol 139 (2005), p.351

Google Scholar

[10] P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel: Inorg. Chem. Vol 35 (1996), p.1168

Google Scholar

[11] W. Lu, K. Henry, C. Turchi and J. Pellegrino: J. Electrochem. Soc. Vol 155 (2008), A361

Google Scholar

[12] N. Terasawa, I. Takeuchi, K. Mukai and K. Asaka: Polymer Vol 51 (2010), p.3372

Google Scholar

[13] J.H. Kim, B.R. Min, J. Won and Y.S. Kang: J. Phys. Chem. B Vol 107 (2003), p.5901

Google Scholar

[14] M.M. Armand, J.R. McCallum and C.A. Vincent: Polymer Electrolyte Reviews, Elsevier, London,(1987) vol. 1

Google Scholar