Effects of Substrate Bias Voltage on the Critical Failure Load of Cr-Al-N Coatings

Article Preview

Abstract:

Cr-Al-N coatings with the thickness of about 2 mm have been prepared in a magnetron sputtering system by reactive co-sputtering from a chromium target and an aluminum target in a mixed Ar/N2 atmosphere. The effects of substrate negative bias voltage (VB) on the microstructure and critical failure load have been investigated by a scratch test as the VB varied from 0 to –150 V. The critical failure load reached the maximum value for the coating deposited under VB = –50 V, then decreased with VB further increasing. Re-sputter effect of The heavy bombardment of the ion to the substrate improve the critical failure load for the coating deposited under VB = –50 V. The decrease of the critical failure loads for the coatings deposited under –100V and –150 V probably resulted from the high microstrain in the crystal lattice.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Pages:

180-183

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. G. Han, J. S. Yoon, H. J. Kim, K. Song, Surf. Coat. Technol. Vol.86–87 (1996): p.82.

Google Scholar

[2] A. Kondo, T. Oogami, K. Sato and Y. Tanaka: Surf. Coat. Technol. Vol.177 (2004): p.238

Google Scholar

[3] Y. Makino and K. Nogi: Surf. Coat. Technol. Vol.98 (1998): p.1008

Google Scholar

[4] M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota and T. Aizawa: Surf. Coat. Technol.Vol. 177-178 (2004), p.627

Google Scholar

[5] O. Banankh, P. E. Schmid, R. Sanjinés and F. Lévy: Surf. Coat. Technol. Vol.163-164 (2003), p.57

Google Scholar

[6] Liping Wang, Guangan Zhang, R.J.K. Wood, S.C. Wang, Qunji Xue: Surface and Coatings Technology Vol.204 (2010): p.3517

Google Scholar

[7] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, J.A. Rees: Surface and Coatings Technology Vol. 201 (2007): p.6960

Google Scholar

[8] B. Tlili, N. Mustapha, C. Nouveau, Y. Benlatreche, G. Guillemot, M. Lambertin:Vacuum Vol.84 (2010): p.1067

DOI: 10.1016/j.vacuum.2010.01.011

Google Scholar

[9] J. Romero, M.A. Gómez, J. Esteve, F. Montalà, L. Carreras, M. Grifol, A. Lous: Thin Solid Films Vol.515 (2006): p.113

DOI: 10.1016/j.tsf.2006.01.061

Google Scholar

[10] J. Vetter, E. Lugscheider and S. S. Guerreiro: Surf. Coat. Technol. Vol 98 (1998): p.1233

Google Scholar

[11] Jung Min J., Nam Kyung H., Jung Yun M., Han Jeon G.: Surf. Coat. Technol. Vol.171m (2002): p.59

Google Scholar

[12] C. Gautier, G. Moulard, J. P. Chatelon and G. Montlyl: Thin Solid Films Vol. 384 (2001) p.102

Google Scholar

[13] H. Nakajima, T. Tanaka, M. Hashimoto, J. Shi and Y. Nakamura: Thin Solid Films: Vol.459 (2004): p.156

Google Scholar

[14] Y. Yin, D. Mckenzie and M. Bilek: Surf. Coat. Technol. Vol.198 (2005): p.156

Google Scholar

[15] P. Patsalas and S. Logothetidis: J. Appl. Phys. Vol.90 (2001): p.4725

Google Scholar

[16] V. N. Zhitomirsky, I. Grimberg, L. Rapoport, R. L. Boxman, N. A. Travitzky, S. Goldsmith and B. Z. Weiss: Surf. Coat. Technol.Vol.133-134 (2000): p.114

DOI: 10.1016/s0257-8972(00)00884-7

Google Scholar

[17] A. J. Perry: J. Vac. Sci. Technol. A, Vol.8 (1990): p.1351

Google Scholar

[18] Ming Zhu, Shuwang Duo, Tianpeng Li, Meishuan Li, Yanchun Zhou: Key Engineering Materials Vol.373-374 (2008): p.167

Google Scholar

[19] D. Walton: J. Chem. Phys. Vol.37 (1962): p.1671

Google Scholar