A Kinetic Model for Cassava Starch Hydrolysis under Cold Enzyme Two-Stage Hydrolysis Condition

Abstract:

Article Preview

A suitable starch hydrolysis strategy is crucial for conversion of starch into fermentable sugar, both with regard to reducing hydrolysis cost and increasing hydrolysis efficiency. A mathematical model for starch hydrolysis has been developed to predict sugar released curves based on experimental data from starch cold enzyme hydrolysis. At the first part of cold enzyme hydrolysis, starch was hydrolyzed by α-amylase (EC 3.2.1.1) and conversion into dextrin and glucose. Secondly, the residual starch and dextrin were second hydrolysis by glucoamylase (EC 3.2.1.3) into glucose. Fitting of experimental data was made by non-linear regression. Parameters values calculate were obtain from previous studies or experiments. Though mathematic formulation, the kinetic model was able to fit experiment with very good agreement. This model can be used for simulation of the industrial process and for faults detection. It can also be utilized for the optimization and even for the supervised control of the process.

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu

Pages:

2918-2921

DOI:

10.4028/www.scientific.net/AMR.291-294.2918

Citation:

Y. L. Bao et al., "A Kinetic Model for Cassava Starch Hydrolysis under Cold Enzyme Two-Stage Hydrolysis Condition", Advanced Materials Research, Vols. 291-294, pp. 2918-2921, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.