A Novel Electron Paramagnetic Resonance Phenomenon in a Barium Stronium Titanate Ceramic

Article Preview

Abstract:

The electron paramagnetic resonance (EPR) technique was employed to investigate the point defects in barium strontium titanate ceramics. All samples showed a strong EPR signal with g = 2.000, which was indexed as intrinsic Ti-vacancy defects. In (Ba0.85Sr0.15)TiO3 ceramic, which showed a tetragonal symmetry and consisted of the crystallites with average size of ~ 220 nm, a novel EPR powder spectrum was observed - the g-factor of the g = 2.000 signal evolved into a g-tensor, and the two weak signals with g3 = ~ 2.6 and g1 = ~ 1.6 gradually shifted toward the g2 = 2.000 signal and approached to each other with increasing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1050-1054

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.B. Catalan, J.V. Mantese, A.L. Micheli, N.W. Schubring, and R.J. Poisson: J. Appl. Phys., Vol. 76 (1994), p.2541

Google Scholar

[2] D.M. Tahan, A. Safari, and L.C. Klein: J. Am. Ceram. Soc., Vol. 79 (1996), p.1593

Google Scholar

[3] S.C. Roy, M.C. Bhatnagar, G.L. Sharma, R. Manchanda, and V.R. Balakrishnan: Ceram. Int. Vol. 30 (2004), p.2283

Google Scholar

[4] C. Fu, C. Yang, H. Chen, Y. Wang, and L. Hu: Mat. Sci. Eng. B Vol.119 (2005), p.185

Google Scholar

[5] C. Berbecaru, H.V. Alexandru, C. Porosnicu, A. Velea, A. Ioachim, L. Nedelcu, and M. Toacsan: Thin Solid Films Vol. 516 (2008), p.8210

DOI: 10.1016/j.tsf.2008.04.031

Google Scholar

[6] D.-Y. Lu, M. Sugano, and M. Toda, J. Am. Ceram. Soc. Vol. 89 (2006), p.3112

Google Scholar

[7] D.-Y Lu, M. Sugano, W.-H Su, and T. Koda, Cryst. Res. Tech. Vol. 40 (2005), p.703

Google Scholar

[8] T. Kolodiazhnyi and A. Petric: J. Phys. Chem. Solids Vol. 64 (2003), p.953

Google Scholar

[9] T.D. Dunber, W.L. Warren, B.A. Tuttle, C.A. Randall, and T. Tsur: J. Phys. Chem. B Vol. 108 (2004), p.908

Google Scholar

[10] D.-Y Lu, X.-Y. Sun, and M. Toda: Jpn. J. Appl. Phys. Vol. 45 (2006), p.8782

Google Scholar

[11] D.-Y Lu, X.-Y. Sun, and M. Toda: J. Phys. Chem. Solids Vol. 68 (2007), p.650

Google Scholar

[12] D.-Y Lu, M. Toda, T. Ogata, and X.-Y. Sun: Jpn. J. Appl. Phys. Vol. 48 (2009), p.021401

Google Scholar

[13] T.R.N. Kutty, P. Murugaraj, and N.S. Gajbhiye: Mater. Lett. Vol. 2 (1984), p.396

Google Scholar

[14] E. Possenriede, O.F. Schirmer, and H.J. Donnerberg: Ferroelectrics Vol. 92 (1989), p.245

Google Scholar

[15] P. Murugaraj and T.R.N. Kutty: J. Mater. Sci. Lett. Vol. 5 (1986), p.171

Google Scholar

[16] H. Ikushima and S. Mayakawa: J. Phys. Soc. Jpn. Vol. 19 (1964), p. (1986)

Google Scholar

[17] R.N. Schwartz and B.A. Wechsler: Phys. Rev. B Vol. 48 (1993), p.7057

Google Scholar

[18] N.M. Atherton, Principles of Electron Spin Resonance (PEllis Horwood Limitted, England 1993).

Google Scholar