α–Pinene Isomerization Catalyzed by a Nanometer Solid Superacid

Article Preview

Abstract:

Nanometer composite S2O82-/SnO2-TiO2, a novel solid superacid, was prepared by the sol-gel method and its structure was characterized by XRD, TEM, FT-IR and nitrogen adsorption. Results indicated that the composite S2O82-/SnO2-TiO2 had a narrow particle size distribution with an average particle diameter about 15~20nm. S2O82- combined with SnO2-TiO2 resulted in formation of strong acid sites on the surfaces. The surface area of catalysts obviously increased after incorporating SnO2. Nanometer S2O82-/ SnO2-TiO2 composite was used as a catalyst for a-pinene isomerization and the influence of catalyst preparation conditions on its performances were investigated. The optimum condition for superacid catalyst preparation was found to be with 2:1 Sn/Ti mole ratio, S2O82- 1 mol · L-1 of impregnation consideration and toasting temperature of 773K. With 3% of S2O82-/SnO2- TiO2 catalyst dosage at a reaction temperature at 403K for 2 h, the conversion of a-pinene was 98 % and the selectivity to camphene was 62 %.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

156-160

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Takashi, M. Takahiro, T. Tsunehiro, F. Takuzo, Y. Satohiro. J. Mol. Catal. A: Chem., Vol. 155, (2000), p.43

Google Scholar

[2] M. Encormirr, K. Wilson, A. Lee. J. Catal., Vol. 215, (2003), p.57

Google Scholar

[3] F. Özkan, G. Günduü, O.Akpolat, N. Besün, D. Murzin. Chem. Eng. J., Vol. 91, (2003), p.257

Google Scholar

[4] M. Yadav, Ch. Chudasama, R. Jasra. J. Mol. Catal. A: Chem., Vol. 216, (2004), p.51

Google Scholar

[5] G. Gündüz, R. Dimitrova, S. Yilmaz, L. Dimitrov, M. Spassova. J. Mol. Catal. A: Chem., Vol. 225, (2005), p.253

Google Scholar

[6] A. De Stefains, G. Perez, O. Urisni, A.A.G. Tomlinson. Appl. Catal. A: Gen., Vol. 132, (1995), p.353

Google Scholar

[7] A. Severino, J. Esculsas, J. Rocha, L.Vital, S. Lobo. Appl. Catal. A: Gen., Vol. 142, (1996), p.255

Google Scholar

[8] A. Allahverdiev, G. Gündüz, D. Murzin. Ind. Eng. Chem. Res., Vol. 37, (1998), p.2373

Google Scholar

[9] C. Lopez, F. Machado, K. Rodríguez, B. Méndez, M. Hasegawa, S. Pekerar. Appl. Catal. A: Gen., Vol. 173, (1998), p.75

Google Scholar

[10] A. Allahverdiev, S. Irandoust, D.Y. Murzin. J. Catal., Vol. 185, (1999), p.352

Google Scholar

[11] C. Lopez, F. Machado, K. Rodríguez, B. Méndez, M. Hasegawa. Catal. Letters, Vol. 62, (1999), p.221

Google Scholar

[12] N. Besün, F. Özkan, G. Günduü, Appl. Catal. A: Gen., Vol. 224, (2002), p.285

Google Scholar

[13] O. Akpolat, G. Günduü, F. Özkan, N. Besün. Appl. Catal. A: Gen., Vol. 265, (2004), p.11

Google Scholar

[14] L.Grzona, N. Comelli, L. Masini, E. Ponzi, M. Ponzi, React. Kinet. Catal. Letters, Vol. 69, (2000), p.271

DOI: 10.1023/a:1005643731718

Google Scholar

[15] C. Volzone, O. Masini, N. Comelli, L. Masini, L. Grzona,E. Ponzi, M. Ponzi. Appl. Catal. A: Gen., Vol. 214, (2001), p.2135

DOI: 10.1016/s0926-860x(01)00494-x

Google Scholar

[16] T. Yamaguchi, Jin, K. Tanabe. J. Phys. Chem., Vol. 90, (1986), p.3148

Google Scholar