Synthesis of NiCr Nano Oxides as Anode Electrocatalysts for Direct Methanol Fuel Cell

Article Preview

Abstract:

NiCr nano oxides have been synthesized by impregnation method and were used as the anode electrocatalysts for direct methanol fuel cell(DMFC). The catalysts were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The activity of catalysts with different metal molar ratios and calcination temperatures on the methanol oxidation reaction were investigated by cyclic voltammetry(CV) and bulk electrolysis with coulometry. The results show that the NiCr nano oxides calcined at 500°C for 6h gave an excellent electrocatalytic performance in the anodic oxidation of methanol.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

2066-2070

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Chen, F. Ye and W. Lin: International Journal of Hydrogen Energy Vol. 35 (2010), p.8225

Google Scholar

[2] Y. Zhao, F. Wang, J. Tian, X. Yang and L. Zhan: Electrochimica Acta Vol. 55 (2010), p.8998

Google Scholar

[3] S. K. Kamarudina, F. Achmada and W. R. W. Daud: International Journal of Hydrogen Energy Vol. 34 (2009), p.6902

Google Scholar

[4] B. Viswanathan: Catalysis Today Vol. 141 (2009), p.52

Google Scholar

[5] H. Chun, D. Kim, D. Lim, W. Lee and H. Lee: International Journal of Hydrogen Energy Vol. 35 (2010), p.6399

Google Scholar

[6] H. B. Hassan: Journal of Fuel Chemistry and Technology Vol. 37 (2009), p.346

Google Scholar

[7] M. A. Scibioh, S. K. Kim, E. A. Cho, T. H. Lim, S. A. Hong and H. Y. Ha: Applied Catalysis B: Environmental Vol. 84 (2008), p.773

Google Scholar

[8] J. S. Choi, W. S. Chung, H. Y. Ha, T. H. Lim I. H. Oh, S. A. Hong and H. Lee: Journal of Power Sources Vol. 156 (2006), p.466

Google Scholar

[9] W. Li, Q. Xin and Y. Yan: International Journal of Hydrogen Energy Vol. 35 (2010), p.2530

Google Scholar

[10] F. G. Welsch, K. Stwe and W. F. Maier: Catalysis Today Vol. 142 (2010), p.11

Google Scholar

[11] H. J. Cho, J. Kim, Y. Kwon and J. Han: Journal of Power Sources Vol. 19 (2010), p.160

Google Scholar

[12] P. Ferrin, A. U. Nilekar, J. Greeley, M. Mavrikakis and J. Rossmeisl: Surface Science Vol. 602 (2008), p.3424

DOI: 10.1016/j.susc.2008.08.011

Google Scholar

[13] C. Hsieh and J. Lin: Journal of Power Sources Vol. 188 (2009), 347

Google Scholar

[14] S. Basri, S. K. Kamarudin, W. R. W. Daud and Z. Yaakub: International Journal of Hydrogen Energy Vol. 35 (2010), p.7957

DOI: 10.1016/j.ijhydene.2010.05.111

Google Scholar

[15] S. Ahn, O. Kwon, S. Kim, I. Choi and J. Kim: International Journal of Hydrogen Energy Vol. 35 (2010), p.13309

Google Scholar

[16] M. A. Scibioh, S. K. Kim, E. A. Cho, T. H. Lim, S. A. Hong and H. Y. Ha: Applied Catalysis B: Environmental Vol. 84 (2008), p.773

Google Scholar

[17] Y. Zhao, X. Yang, J. Tian, F. Wang and L. Zhan: Materials Science and Engineering B Vol. 171 (2010), p.109

Google Scholar