In Situ Synthesis Process for TiC Whisker Toughening Al2O3-Based Ceramic Cutting Tool Composite

Article Preview

Abstract:

A TiC whisker toughening Al2O3 composite ceramic tool material was developed by an in situ carbothermal reduction synthesis technology. The influence of different synthesis temperatures (1480°C and 1700°C) and holding times (90min, 60min and 30min) on the mechanical properties of the composite was investigated. The results showed that either the lower synthesis temperature (1480°C) or the higher synthesis temperature (1700°C) was necessary to the improvement on the fracture toughness of the composite. However, when an Al2O3-TiO2 eutectic system was formed during the higher temperature synthesis process, grain coarsening of the Al2O3 matrix became much serious, which resulted in obvious decrease in the flexure strength of the composite. Therefore, the carbothermal reduction synthesis process should be divided into two parts including the lower temperature synthesis process for increasing the yield of the TiC whisker and the subsequent higher temperature synthesis process for increasing the carbon content in the TiC whisker, and and the lower temperature synthesis process should be held for enough time (e.g. 60min) to avoid an incomplete carbothermal reduction of TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

949-953

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Z. Huang, X. Ai, Development of advanced composite ceramic tool material, Mater. Res. Bull. 31 (1996) 951-956.

Google Scholar

[2] C.H. Xu, C.H. Huang, Z.Q. Li, X. Ai, Al2O3/SiC/(W, Ti)C multiphase composite ceramic material, Journal of the Chinese Ceramic society. 28 (2000) 538-544. (In Chinese)

Google Scholar

[3] S.A. Baldacim, C. Santos, O.M.M. Silva, C.R.M. Silva, Ceramics composites Si3N4–SiC(w) containing rare earth concentrate (CRE) as sintering aids, Mat. Sci. Eng. A. 367 (2004) 312-316.

DOI: 10.1016/j.msea.2003.10.278

Google Scholar

[4] B. Wilshire, F. Carreño, Deformation and failure processes during tensile creep of fibre and whisker reinforced SiC/Al2O3 composites, Mat. Sci. Eng. A. 272 (1999) 38-44.

DOI: 10.1016/s0921-5093(99)00451-7

Google Scholar

[5] G.Y. Lin and T.C. Lei, Microstructure, mechanical properties and thermal shock behaviour of Al2O3+ZrO2+SiCW composite, Ceram. Int. 24 (1998) 313-326.

DOI: 10.1016/s0272-8842(97)00017-5

Google Scholar

[6] J. Zhao, J.X. Deng, J.H. Zhang, X. Ai, Failure mechanisms of a whisker-reinforced ceramic tool when machining nickel-based alloys, Wear. 208 (1997) 220-225.

DOI: 10.1016/s0043-1648(96)07476-5

Google Scholar

[7] J.S. Lan, P.D. Ding, N. Huang, SiC whiskers and Ti(C, N) particles synergistically toughening Al2O3 matrix ceramic composites for cutters, Journal of Materials Science & Engineering. 22 (2004) 59-64. (In Chinese)

Google Scholar

[8] J.X. Deng, L.L. Liu, J.H. Liu, J.L. Zhao, X.F. Yang, Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys, Int. J. Mach. Tool Manu. 45 (2005) 1393-1401.

DOI: 10.1016/j.ijmachtools.2005.01.033

Google Scholar

[9] M. Soković, J. Mikuła, L.A. Dobrzański, J. Kopač, L. Koseč, P. Panjan, J. Madejski, A. Piech, Cutting properties of the Al2O3+SiC(w) based tool ceramic reinforced with the PVD and CVD wear resistant coatings, J. Mater. Proc. Tech. 164-165 (2005) 924-949.

DOI: 10.1016/j.jmatprotec.2005.02.071

Google Scholar

[10] D. Bandyopadhyay, L.C. Pathak, I. Mukherjee, S.K. Bas, R.G. Ganguly, P. Ramachandrarao, Fabrication of Al2O3-SiCW in situ composite through a new combustion technique, Mater. Res. Bull. 32 (1997) 75-82.

DOI: 10.1016/s0025-5408(96)00170-5

Google Scholar

[11] Y.Q. Wu, Y.F. Zhang, J.K. Guo, In-situ growth whiskers reinforced ceramic composites, Mater. Rev. 14 (2000) 20-22. (In Chinese)

Google Scholar

[12] L. Mariappan, T.S. Kannan, A.M. Umarji, In situ synthesis of Al2O3–ZrO2–SiCW ceramic matrix composites by carbothermal reduction of natural silicates, Mater. Chem. Phys. 75 (2002) 284-290.

DOI: 10.1016/s0254-0584(02)00077-9

Google Scholar

[13] B.Q. Liu, C.Z. Huang, X.Y. Lu, M.L, Gu, H.L, Liu, In-situ Growth of TiC Whiskers in Al2O3 Matrix for Ceramic Machine Tools, Ceram. Int. 33 (2007) 1475-1480.

DOI: 10.1016/j.ceramint.2006.05.015

Google Scholar

[14] B.Q. Liu, C.Z. Huang, M.L. Gu, H.T. Zhu, H.L. Liu, Preparation and mechanical properties of in-situ growth TiC whiskers toughening Al2O3 ceramic matrix composite, Mat. Sci. Eng. A. 460-461 (2007) 146-148.

DOI: 10.1016/j.msea.2007.01.009

Google Scholar

[15] B.Q. Liu, C.Z. Huang, H.L. Liu, X.W. Chong, Development of Whisker Toughening Ceramic Cutting Tool Composite by in Situ Synthesis Technology, Key Engineering Materials, 431-432 (2010) 201-204.

DOI: 10.4028/www.scientific.net/kem.431-432.201

Google Scholar

[16] N. Ahlén, M. Johnsson, M. Nygren, Carbothermal synthesis of TiC whiskers via a vapor-liquid-solid growth mechanism, J. Am. Ceram. Soc. 79 (1996) 2803-2808.

DOI: 10.1111/j.1151-2916.1996.tb08711.x

Google Scholar