[1]
C.H. Xu, Preparation and performance of an advanced multiphase composite ceramic material, J. Eur. Ceram. Soc. 25 (2005) 605-611.
Google Scholar
[2]
A.S. Kumar, A.R. Durai, T. Sornakumar, Development of alumina–ceria ceramic composite cutting tool, Int. J. Refract. Met. H. 22 (2004) 17–20
DOI: 10.1016/j.ijrmhm.2003.10.005
Google Scholar
[3]
S. Lo Casto, E. Lo Valvo, E. Lucchini, S. Maschio, M. Piacentini, V.F. Ruisi, Ceramic materials wear mechanisms when cutting nickel-based alloys, Wear 225-229 (1999) 227-233
DOI: 10.1016/s0043-1648(98)00360-3
Google Scholar
[4]
M.K. Young, T.K. Won, W.K. Young, Development of Al2O3–SiC composite tool for machining application, Ceram. Int. 30 (2004) 2081-2086.
Google Scholar
[5]
J. Vleugels, O. Van Der Biest, Chemical wear mechanisms of innovative ceramic cutting tools in the machining of steel, Wear 225-229 (1999) 285-294
DOI: 10.1016/s0043-1648(98)00362-7
Google Scholar
[6]
C.Z. Huang, X. Ai, Development of advanced composite ceramic tool material, Mater. Res. Bull. 31 (1996) 951-956.
Google Scholar
[7]
J. Zhao, J.X. Deng, J.H. Zhang, X. Ai, Failure mechanisms of a whisker-reinforced ceramic tool when machining nickel-based alloys, Wear 208 (1997) 220-225
DOI: 10.1016/s0043-1648(96)07476-5
Google Scholar
[8]
J.X. Deng, L.L. Liu, J.H. Liu, J.L. Zhao, X.F. Yang, Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys, Int. J. Refract. Met. H. 45 (2005) 1393-1401.
DOI: 10.1016/j.ijmachtools.2005.01.033
Google Scholar
[9]
D. Jianxin, A. Xing, Wear behavior and mechanisms of aluminabased ceramic tools in machining of ferrous and non-ferrous alloys, Tribol. Int. 30 (11) (1988) 807–813.
DOI: 10.1016/s0301-679x(97)00062-5
Google Scholar
[10]
S. Novak, M. Kalin, T. Kosmac, Chemical aspects of wear of alumina ceramics, Wear. 250 (2001) 318–321.
DOI: 10.1016/s0043-1648(01)00597-x
Google Scholar
[11]
S. Lo Casto, E. Lo Valvo, E. Lucchini, S. Maschio, M. Piacentini, V. F. Ruisi, Chemical wear mechanisms of innovative ceramic cutting tools in the machining of steel, Wear. 225-229 (1999) 227–233.
DOI: 10.1016/s0043-1648(98)00360-3
Google Scholar
[12]
B.Q. Liu, C.Z. Huang, X.Y. Lu, M.L, Gu, H.L, Liu, In-situ Growth of TiC Whiskers in Al2O3 Matrix for Ceramic Machine Tools, Ceram. Int. 33(2007) 1475-1580.
DOI: 10.1016/j.ceramint.2006.05.015
Google Scholar
[13]
B.Q. Liu, C.Z. Huang, M.L. Gu, H.T. Zhu, H.L. Liu, Preparation and mechanical properties of in-situ growth TiC whiskers toughening Al2O3 ceramic matrix composite, Mater. Sci. Eng. A. 460-461 (2007) 146-148.
DOI: 10.1016/j.msea.2007.01.009
Google Scholar
[14]
B.Q. Liu, C.Z. Huang, H.L. Liu, X.W. Chong, Development of Whisker Toughening Ceramic Cutting Tool Composite by in Situ Synthesis Technology, Key Eng. Mater. 431-432 (2010) 201-204.
DOI: 10.4028/www.scientific.net/kem.431-432.201
Google Scholar
[15]
Z.Q. Liu, X. Ai, Developing state of high speed cutting tools, Tool Eng. 35 (2001) 3-8. (In Chinese)
Google Scholar
[16]
A. Senthil Kumar, A. Raja Durai, T. Sornakumar, Machinability of hardened steel using alumina based ceramic cutting tools, Int. J. Refract. Met. H. 21 (2003) 109-117.
DOI: 10.1016/s0263-4368(03)00004-0
Google Scholar