Novel DNA Electrochemical Biosensor Using Anthraquinone-2-Sulfonic Acid Sodium Salt as Hybridization Indicator

Article Preview

Abstract:

A novel DNA biosensor based on layer-by-layer self-assembled multi-walled carbon nanotubes (MWNTs) functionalized with a mercapto group (SH-MWNTs) and gold nano-particles (GNPs) was presented, where anthraquinone-2-sulfonic acid sodium salt (AQMS) was used as hybridization indicator. The differential pulse voltammetry responses demonstrated that this DNA/GNPs/SH-MWCNTs/Au biosensor was enabled to specifically detect the single-base mismatch DNA sequence in phosphate buffer solution with pH 7.4 containing 0.3 mol/L Na+ and 1.0 mmol/L AQMS. The result showed that when the target DNA concentration was 1.0×10-10 to 1.6×10-5 mol/L, the cathodic peak current of Au electrode system with AQMS as indicator was linearly related to complementary NDA concentration, and the detection limit was about 3.82×10-11 mol/L and had good stability and specificity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-62

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, Survey and Summary from DNA Biosensors to Gene Chips, Nucl. Acids. Res., vol. 28, Aug. 2000, pp.3011-3016, doi: 10. 1093/nar/28. 16. 3011.

DOI: 10.1093/nar/28.16.3011

Google Scholar

[2] J. J. Gooding, Electrochemical DNA Hybridization Biosensors, Electroanalysis, vol. 14, Sep. 2002, pp.1149-1156, doi: 10. 1002/1521-4109(200209)14: 17<1149: AID-ELAN1149>3. 0. CO; 2-8.

DOI: 10.1002/1521-4109(200209)14:17<1149::aid-elan1149>3.0.co;2-8

Google Scholar

[3] J. H. Cha, J. I. Han, Y. Choi, D. S. Yoon, K. W. Oh, and G. Lim, DNA Hybridization Electrochemical Sensor Using Conducting Polymer, Biosens. Bioelectron., vol. 18, Sep. 2003, pp.1241-1247, doi: 10. 1016/S0956-5663(03)00088-5.

DOI: 10.1016/s0956-5663(03)00088-5

Google Scholar

[4] S. Rauf, J. J. Gooding, K. Akhtar, M. A. Ghauria, M. Rahmana, M. A. Anwara, and A. M. Khalida, Electrochemical Approach of Anticancer Drugs-DNA Interaction, J. Pharm. Biomed. Anal., vol. 37, Feb. 2005, p.205.

Google Scholar

[5] S. C. Garrett, L. Hodgson, A. Rybin, A. Toutchkine, K. M. Hahn, D. S. Lawrence, and A. R. Bresnick, A Biosensor of S100A4 Metastasis Factor Activation: Inhibitor Screening and Cellular Activation Dynamics, Biochemistry, vol. 47, Jan. 2008, pp.986-996.

DOI: 10.1021/bi7021624

Google Scholar

[6] D. Ozkan, A. Erdem, P. Kara, K. Kerman, B. Meric, J. Hassmann, and M. Ozsoz, Allele-Specific Genotype Detection of Factor V Leiden Mutation from Polymerase Chain Reaction Amplicons Based on Label-Free Electrochemical Genosensor, Anal. Chem., vol. 74, Dec. 2002, p.5931.

DOI: 10.1021/ac0257905

Google Scholar

[7] E. Palecek, S. Billova, L. Havran, R. Kizek, A. Miculkova, and F. Jelen, DNA Hybridization at Microbeads with Cathodic Stripping Voltammetric Detection, Talanta, vol. 56, Apr. 2002, p.919–930, doi: 10. 1016/S0039-9140(01)00666-X.

DOI: 10.1016/s0039-9140(01)00666-x

Google Scholar

[8] Q. X. Wang, X. L. Yuan, K. Jiao, J. K. Xie, and B. Zhong, The Non-Labeling Electrochemical Active Deoxyribonucleic Acid . Hybridization Indicators, Prog. Chem., vol. 19, Jun. 2007, pp.1007-1015, doi: CNKI: ISSN: 1005-281X. 0. 2007-06-015.

Google Scholar

[9] J. Wang, G. Rivas, J. R. Fernandes, J. L. L. Paz, M. Jiang, and R. Waymire, Indicator-Free Electrochemical DNA Hybridization Biosensor, Anal. Chim. Acta, vol. 375, Nov. 1998, p.197–203, doi: 10. 1016/S0003-2670(98)00503-0.

DOI: 10.1016/s0003-2670(98)00503-0

Google Scholar

[10] C. N. Campbell, D. Gal, N. Cristler, C. Banditrat, and A. Heller, Enzyme-Amplified Amperometric Sandwich Test for RNA and DNA, Anal. Chem., vol. 74, Jan. 2002, p.158–162, doi: 10. 1021/ac015602v.

DOI: 10.1021/ac015602v

Google Scholar

[11] S. O. Kelley, E. M. Boon, J. K. Barton, N. M. Jackson, and M. G. Hill, Single-Base Mismatch Detection Based on Charge Transduction through DNA, Nucleic Acids Res., vol. 27, Dec. 1999, p.4830–4837, doi: 10. 1093/nar/27. 24. 4830.

DOI: 10.1093/nar/27.24.4830

Google Scholar

[12] D. H. Johnston, K. C. Glasgow, and H. H. Thorp, Electrochemical Measurement of the Solvent Accessibility of Nucleobases Using Eletrntransfer between DNA and Metal-Complexes, J. Am. Chem. Soc., vol. 117, Sep. 1995, p.8933.

DOI: 10.1021/ja00140a006

Google Scholar

[13] S. Takenaka, K. Yamashita, M. Takagi, Y. Uto, and H. Kondo, DNA Sensing on a DNA Probe-Modified Electrode Using Ferrocenylnaphthaene Diimide as the Electrochemically Active Ligand, Anal. Chem., vol. 72, Mar. 2000, p.1334.

DOI: 10.1021/ac991031j

Google Scholar

[14] L. S. Elicia, P. Erohkin, and J. J Gooding, A Comparison of Cationic and Anionic Intercalators for the Electrochemical Transduction of DNA Hybridization via Long Range Electron Transfer, Electrochem Com., vol. 6, Jul. 2004, pp.648-654.

DOI: 10.1016/j.elecom.2004.05.002

Google Scholar

[15] L. S. Elicia, Wong, J. F. Mearms, and J. J. Gooding, Further Development of an Electrochemical DNA Hybridization Biosensor Based on Long-range Electron Transfer, Sens. Actuators, B, vol. 111-112, Nov. 2005, pp.515-521.

DOI: 10.1016/j.snb.2005.03.072

Google Scholar

[16] Z. F. Liu, Z. Y. Shen, T. Zhu, S. F. Hou, and L. Z. Ying, Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique, Langmuir, vol. 16, Apr. 2000, pp.3569-3573, doi: 10. 1021/la9914110.

DOI: 10.1021/la9914110

Google Scholar