Theoretical Analysis of the Influence of the Electron Pulse Modification on Al-Cu-Mn Alloy Initial Aging Stage with Valence Electron Structure

Article Preview

Abstract:

Statistical values of valence electron structure parameter for phase structures of super saturation solid solutions in the initial aging stage of Al-Cu-Mn alloy were calculated by using the Empirical Electronic Theory in solid and molecules (EET), then the influence of various kinds of unit cells on the aging initial stage of the Al-Cu-Mn alloy subjected to the electron pulse modification was analyzed. The results show that the a-Al-Cu-Mn phase structure unit (cell) with larger atomic distortion provides the driving force for the saturated Al-Cu-Mn alloy to form G.P quickly and results in the increase in the primary nucleus of Al-Cu-Mn alloy; thus the a-Al-Cu-Mn phase structure unit (cell) playes an important role in the improvement of alloy aging. After the application of pulsed electric field into Al-Cu-Mn alloy melt, the movement of atoms is accelerated, and the number of segregation units of Al-Cu-Mn is increased, as a result the number of the second phase is increased; generating the remarkable aging strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 299-300)

Pages:

328-332

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. C. Xiong: Special Casting&{TTP}-250 Nonferrous Alloys Vol. 4 (1998), pp.1-2.

Google Scholar

[2] J. Polmear, G. Pons, H. Octor: Mater. Sci. Forum Vol. 217-222 (1996), pp.1759-1764.

Google Scholar

[3] Y. X. Li, D. H. Ni, D. H. Zhao, et a1: Foundry Vol. 14(2000), pp.20-21.

Google Scholar

[4] R. G. Song: Mater. Rev. Vol. 14 (2000), pp.20-21.

Google Scholar

[5] H. Q. Dong, J. E. Zhou, W. Yan: J. Xi'an Institute Tech. Vol. 22 (2002), pp.159-163.

Google Scholar

[6] J. Z. Wang, D. Q. Chang: China, CN98100543 (1998).

Google Scholar

[7] J. Z. Wang: PhD Thesis, University of Science and Technology Beijing, (1998).

Google Scholar

[8] L. Z. Li, Y. B. Zhong, H. Cui, et a1. J. University of Science and Technology Beijing, Vol. 26(2004), pp.478-481.

Google Scholar

[9] X. D. Shi, Q. G. Xue, J. S. Wang, et a1. Hot Working Techn. Vol. 30 (2005), pp.72-74.

Google Scholar

[10] X. J. Liu, J. Z. Wang, J. G. Qi: Hot Working Techn. Vol. (35) 2006, pp.4-5.

Google Scholar

[11] B. Wang, J. Z. Wang, J. G. Qi, et a1: Transactions of Materials and Heat Treatment Vol. 28(2007), pp.4-6.

Google Scholar

[12] R.H. Yu: Chin. Sci. Bull. Vol. 23 (1978), pp.217-222.

Google Scholar

[13] R. L. Zhang. The empirical electron theory of solids and molecules (Jilin Science and Technology Press, ChangChun 1993).

Google Scholar

[14] Z. L. Liu, Z. L. Li, W. D. Liu. The interface electron structure and the properties of interfaces, (Science in China Press, 2002).

Google Scholar

[15] Z.L. Liu, C. Lin. The statistical values of electron structure parameters and the properties of alloys, (Metallurgical Industry Press, 2008).

Google Scholar

[16] C. Lin, Z. L. LIU: Sci. Chin. Ser. E. Vol. 51 (2008), p.1867.

Google Scholar

[17] Y. Z. Fu: J. Liaoning Institute of Technology Vol. 26 (2006), pp.258-261.

Google Scholar