Molecular Dynamics Simulation Study of the Structural Evolution in the Cu-Ni Coalescence Induced by Ni Heterocluster

Article Preview

Abstract:

Molecular dynamics with an embedded atom method was used to study the coalescence of heteroclusters at different temperatures. The coalescences between heteroclusters and homoclusters were compared. The results showed that: the coalesced complex of two liquid heteroclusters separated into two small droplets at or above a certain temperature which was much higher than the melting temperature of each cluster. When the temperature was lower than the value, the ordered alignment on the close packed (111) facet was induced by Ni cluster. These phenomena did not occur during the homoclusters coalescence.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 299-300)

Pages:

395-398

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Schulz and K. Baberschke: Phys. Rev. B Vol. 50 (1994), p.13467.

Google Scholar

[2] G. Bochi, C.A. Ballentine, H.E. Inglefield, C.V. Thompson and R.C. O'Handley: Phys. Rev. B Vol. 52 (1995), p.7311.

Google Scholar

[3] S. Müller, B. Schulz, G. Kostka, M. Farle, K. Heinz and K. Baberschke: Surf. Sci. Vol. 364 (1996), p.235.

Google Scholar

[4] W. Platow, U. Bovensiepen, P. Poulopoulos, M. Farle, K. Baberschke, L. Hammer, S. Walter, S. Müller and K. Heinz: Phys. Rev. B Vol. 59 (1999), p.12641.

DOI: 10.1103/physrevb.59.12641

Google Scholar

[5] D.H. Kim, H.Y. Kim, H.G. Kim, J.H. Ryu and H.M. Lee: J. Phys.: Condens. Matter Vol. 20(2008), p.035208.

Google Scholar

[6] F.J. Palacios and M.P. Iniguez: Nucl. Instrum. Meth. A Vol. 196 (2002), p.253.

Google Scholar

[7] M.M. Mariscal, S. A. Dassie and E.P.M. Leiva: J. Chem. Phys. Vol. 123 (2005), p.184505.

Google Scholar

[8] L.J. Lewis, P. Jensen and J.L. Barrat: Phys. Rev. B Vol. 56 (1997), p.2248.

Google Scholar

[9] F. Ding, A. Rosén and K. Bolton: Phys. Rev. B Vol. 70 (2004), p.075416.

Google Scholar

[10] M.R. Zachariah and M.J. Carrier: J. Aerosol Sci. Vol. 30 (1999), p.1139.

Google Scholar

[11] G.J. Li, Q. Wang, H.T. Li, K. Wang and J.C. He: Chin. Phys. B Vol. 17 (2008), p.3343.

Google Scholar

[12] G.J. Li, Q. Wang, T. Liu, K. Wang and J.C. He: J. Clust. Sci. Vol. 21 (2010), p.45.

Google Scholar

[13] G.J. Li, Q. Wang, D.G. Li, X. Lü and J.C. He: Phys. Lett. A Vol. 372 (2008), p.6764.

Google Scholar

[14] J. Cai and Y.Y. Ye: Phys. Rev. B Vol. 54 (1996), p.83980.

Google Scholar

[15] Y. Qi, T. Cagin, W.L. Johnson and W.A. Goddard III: J. Chem. Phys. Vol. 115 (2001), p.385.

Google Scholar

[16] H.B. Liu, U. Pal, R. Perez and J.A. Ascencio: J. Phys. Chem. B Vol. 110 (2006), p.5159.

Google Scholar