Preparation and the Blood Compatibility of Titanium Oxide Nanorod Arrays

Article Preview

Abstract:

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

25-30

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L Feng, J.D. Andrade. Proteins at interfaces II: fundamentals and applications. In: Horbett TA, Brash JL, editors. Structure and adsorption properties of fibrinogen, Washington, DC: American Chemical Society; 1995.

Google Scholar

[2] B. Balakrishnan, D. S, Kumar, Y. Yoshida: Biomaterials 26 (2005) 3495-3502.

Google Scholar

[3] S.W. Lee, L.J. Chen, P.S. Chen, M.J. Tsai, C.W. Liu, W.Y. Chen and T.M. Hsu: Appl. Surf. Sci 224 (2004) 152-155.

Google Scholar

[4] Y. M.Chen, M. Tanaka, J.P. Gong, K. Yasuda, S. Yamamoto, M. Shimomura and Y. Osada: Biomaterials 28 (2007) 1752-1760.

Google Scholar

[5] N. Maalej, R. Albrecht, J. Loscalzo, J.D. Folts: J. Am. Coll. Cardiol 33 (1999) 1408-1414.

Google Scholar

[6] L.B. Koh, I. Rodriguez and S.S. Venkatraman: Acta Biomaterialia 5 (2009) 3411–3422.

Google Scholar

[7] H.L. Fan, P.P. Chen, R.M. Qi, J. Zhai, J.X. Wang, L. Chen, L. Chen, Q.M. Sun, Y.L. Song, D. Han and L. Jiang: Small 5 (2009) 2144–2148.

DOI: 10.1002/smll.200900345

Google Scholar

[8] A. Fujishima and K. Honda: Nature 238 (1972) 37-38.

Google Scholar

[9] A. Linsebigler, G. Lu and J.T. Yates: Chem. Rev 95(1995) 735-758.

Google Scholar

[10] B.O'Regan and M. Gratzel: Nature 353 (1991) 737-740.

Google Scholar

[11] J. Hong, J. Cao, J.Z. Sun, H.Y. Li and M. Wang: Chem. Phys. Lett 380 (2003) 366-371.

Google Scholar

[12] Y.N. Xia, P.D. Yang: Adv. Mater 15 (2003) 351-352.

Google Scholar

[13] S.K. Pradhan, P.J. Reucroft, F. Yang, A. Dozier: J. Crystal Growth 256 (2003) 83-88.

Google Scholar

[14] A. Sadeghzadeh-Attar, M. S. Ghamsari, F. Hajiesmaeilbaigi and Sh. Mirdamadi: Quantum Electronics and Optoelectronics 10 (2007) 36-39.

Google Scholar

[15] G.H. Du, Q. Chen, R.C. Che and L.M. Peng: Appl. Phys. Lett. 79 (2001) 3702-3703.

Google Scholar

[16] Hoyer: Langmuir 12 (1996) 1411-1403.

Google Scholar

[17] B. Liu and E.S. Aydil: J. AM. CHEM. SOC 131 (2009) 3985–3990.

Google Scholar

[18] E. Hosono, S. Fujihara and H. Imai: J. Am. Chem. Soc. 126 (2004) 7790-7791.

Google Scholar

[19] B.S. Smith, S. Yoriya, L. Grissom, C.A. Grimes and K. C. Popat: J. Biomed. Mater. Reaser. A 95 (2010) 350-360.

Google Scholar

[20] S.L. Goodman: J Biomed. Mater. Resear. 45 (1999) 240–250.

Google Scholar

[21] S.N. Rodrigues, I.C. Goncalves, M.C. Martins, M.A. Barbosa and B.D. Ratner: Biomaterials 27 (2006) 5357–5367.

Google Scholar