Rapid Detection of Shellfish Major Allergen Tropomyosin Using Superparamagnetic Nanoparticle-Based Lateral Flow Immunoassay

Article Preview

Abstract:

In this study, a competitive assay format using superparamagnetic nanoparticle-based lateral flow immunoassay (LFIA) was developed for rapid, quantitative detection of shellfish major allergen tropomyosin (Tm). Sartorius CN140 nitrocellulose membrane and 0.05mg/mL Tm immobilized in the test line (T line) were optimized in order to improve the performance of the LFIA system. Calibration curves for Tm under PBS-T diluents and carp muscle extraction diluents were established. Limit of detection (LOD) for Tm calibrated by carp muscle matrix was 12.4ng/mL with a work range of 0.01 to 20μg/mL. According to magnetic signals change with the time of sample flowing on the strip, the qualitative time of the LFIA was about 10min, while the quantitative time of the LFIA was about 25min. 30 food species were detected separately by the LFIA and Western blot method to evaluate the specificity of the LFIA. Overall relative agreement of the two methods was 96.7% (29/30). Moreover, intra- and inter-assay precisions of the LFIA for Tm detection were <10.20% and <12.34%, respectively. The average recovery range in different food matrices was 80.3~111.8%, within a reasonable range. Our data confirmed that the superparamagnetic nanoparticle-based LFIA method developed in this study is rapid, simple, high specificity and capable of quantitative test. Consequently, the LFIA has the potential application in the field of point-of-care test of shellfish major allergen Tm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

436-445

Citation:

Online since:

August 2011

Export:

Price:

$46.00

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.S. Leung and K.H. Chu: Front Biosci. Vol. 3 (1998), p.306.

Google Scholar

[2] Y. Lu, T. Ohshima, H. Ushio, Y. Hamada and K. Shiomi: Food Chem. Vol. 100 (2007), p.1093.

Google Scholar

[3] G. Reese, R. Ayuso and S. B. Lehrer: Int. Arch. Allergy Immunol. Vol. 119 (1999), P. 247.

Google Scholar

[4] Y. Suma, S. Ishizaki, Y. Nagashima, Y. Lu, H. Ushio and K. Shiomi: Comp. Biochem. Physiol. B Biochem. Mol. Biol. Vol. 147 (2007), P. 230.

Google Scholar

[5] H. Scott, M.D. Sicherer, A. Hugh and M.D. Sampson: J. Allergy Clin. Immunol. Vol. 125 (2010), p.116.

Google Scholar

[6] P.S. Leung and K.H. Chu: Clin. Exp. Allergy Vol. 31 (2001), p.1287.

Google Scholar

[7] A.J. van Hengel: Anal. Bioanal. Chem. Vol. 389 (2007), p.111.

Google Scholar

[8] L. Monaci and A. Visconti: Trac-trend Anal. Chem. Vol. 28 (2009), p.581.

Google Scholar

[9] H.R. Fuller, P.R. Goodwin, G. E. Morris: Food Agric. Immunol. Vol. 17 (2006), P. 43.

Google Scholar

[10] K.Y. Jeong, H.Y. Yum, I.Y. Lee, H.I. Ree, C.S. Hong, D.S. Kim and T.S. Yong: Clin. Diagn. Lab. Immunol. Vol. 11 (2004), p.320.

Google Scholar

[11] Y. Lu, T. Ohshima, H. Ushio and K. Shiomi: Hybridoma Hybridom. Vol. 23 (2004), p.357.

Google Scholar

[12] J. Fernandes, A. Reshef, L. Patton, R. Ayuso, G. Reese and S.B. Lehrer: Clin. Exp. Allergy Vol. 33 (2003), p.956.

Google Scholar

[13] A.M. Abdel Rahman, A.L. Lopata, E.W. Randell, R.J. Helleur: Anal. Chim. Acta Vol. 681 (2010), pp.49-55.

Google Scholar

[14] Information on http: /www. r-biopharm. com/product_site. php.

Google Scholar

[15] Information on http: /www. ruipinbio. com/product_view. asp?id=49.

Google Scholar

[16] P. Schubert-Ullrich, J. Rudolf, P. Ansari, B. Galler, M. Führer, A. Molinelli and S. Baumgartner: Anal. Bioanal. Chem. Vol 395 (2009), p.69.

DOI: 10.1007/s00216-009-2715-y

Google Scholar

[17] Y. Wang, H. Xu, M. Wei, H. Gu, Q. Xu and W. Zhu: Mater. Sci. Eng., C Vol. 29 (2009), p.714.

Google Scholar

[18] A. Ambrosi, M.T. Castaneda, A.J. Killard, M.R. Smyth, S. Alegret and A. Merkoci: Anal. Chem. Vol. 79 (2007), p.5232.

Google Scholar

[19] D. Tang, J.C. Sauceda, Z. Lin, S. Ott, E. Basova, I. Goryacheva, S. Biselli, J. Lin, R. Niessner and D. Knopp: Biosens. Bioelectron. Vol. 25 (2009), p.514.

DOI: 10.1016/j.bios.2009.07.030

Google Scholar

[20] S. Workmana, S.K. Wells, C.P. Paua, S.M. Owena, X.F. Dong, R. LaBordec and T.C. Granadea: J. Virol. Methods Vol. 160 (2009), p.14.

Google Scholar

[21] Q.F. Xu, H. Xu, H. Gu, J.B. Li, Y. Wang and M. Wei: Mater. Sci. Eng., C Vol. 29 (2009), p.702.

Google Scholar

[22] M.M. Bradford: Anal. Biochem. Vol. 72 (1976), p.248.

Google Scholar

[23] M.C. Huang and Y. Ochiai: Comp. Biochem. Physiol. B: Biochem. Mol. Biol. Vol 141 (2005), p.461.

Google Scholar

[24] M.L. Greaser and J. Gergely: J. Biol. Chem. Vol. 246 (1971), p.4226.

Google Scholar

[25] U.K. Laemmli: Nature Vol. 227 (1970), p.680.

Google Scholar

[26] H. Towbin, T. Staehelin and J. Gordon: Proc. Nat. Acad. Sci. U. S. Vol. 76 (1979), p.4350.

Google Scholar

[27] W.J. Gui, S.T. Wang, Y.R. Guo and G.N. Zhu: Anal. Biochem. Vol. 377 (2008), p.202.

Google Scholar