Effect of Rotating Magnetic Field on Microstructure Evolution of Pb-Bi Alloys

Article Preview

Abstract:

Solidification behaviour of Pb-Bi alloys under rotating magnetic field (RMF) was investigated experimentally to understand the effect of the frequency of RMF on the nucleation and growth behaviour. It was found that, as the increase of the rotating frequency, the grains are fragmented and refined gradually until a transition from columnar to equiaxed microstructures happens at a rotating frequency of 40 Hz. Moreover, the Bi concentration of the primary phase decreases and macrosegregation is eliminated effectively with RMF. These are due to the effect of RMF on the nucleation, growth and fluid flow in the solidification process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

600-608

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Zimmermann, A. Weiss and Z. Mbaya: Mater. Sci. Eng. A Vol.413-414(2005),p.236.

Google Scholar

[2] Yu.M. Gelfgat, J. Krumin and M. Abricka:Prog. Cryst. Growth. Ch (1999),p.59.

Google Scholar

[3] A. Noeppel,A. Ciobanas X.D. Wang,K. Zaidat,et at:Metall. Trans. Vol.41B (2010),p.193.

Google Scholar

[4] J.E. Spinelli, I.L. Ferreira, A. Garcia: J. Alloys Compd. Vol.384 (2004),p.217.

Google Scholar

[5] B. Liu, Zhi.L. Zhao, Y.X. Wang, Z. Chen: J. Cryst. Growth Vol.271 2004,p.294.

Google Scholar

[6] V. Abramov, O. Abramov, V. Bulgakov, F. Sommer:Mater. Lett.Vol.37 (1998),p.27.

Google Scholar

[7] J. Dong, J.Z. Cui, W.J. Ding: J. Cryst. Growth Vol.295 (2006),p.179.

Google Scholar

[8] P.A. Nikrityuk, K. Eckert, R. Grundmann: Int. J. Heat. Mass. Transfer. Vol.49 (2006),p.1501.

Google Scholar

[9] Z. Fan, G. Liu, M. Hitchcock: Mater. Sci. Eng. A Vol.413–414 (2005),p.229.

Google Scholar

[10] K. Zaïdat, N. Mangelinck-Noël, R. Moreau: C. R. Mecanique (2007),p.330.

Google Scholar

[11] T. Campanella, C. Charbon, And M. Rappaz: Metall. Trans. A Vol.35 (2004),p.3201.

Google Scholar

[12] S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel and G. Zouhar.: Mater. Sci. Eng. A Vol.413–414 (2005),p.211.

DOI: 10.1016/j.msea.2005.09.014

Google Scholar

[13] M. Medina, Y. Du Terrail, F. Durand, And Y. Fautrelle: Metall. Trans. B Vol.35 (2004),p.743.

Google Scholar

[14] M. Herlach. Solidification and Crystallization, WILEY-VCH Verlag GmbH&Co. KGaA. Weinheim (2004).

DOI: 10.1021/cg0580105

Google Scholar

[15] Z. Chen, C.L. Chen, X.L. Wen, J.H. Zhu and W.S. Gao.:Chin. Sci. Bull. Vol.53 (2008),p.2575.

Google Scholar

[16] D. Turnbull: J. Appl. Phys. Vol.21 (1950),p.1022.

Google Scholar

[17] D. Turnbull and R. E. Cech,:J. Appl. Phys. Vol.21 (1950),p.804.

Google Scholar

[18] L. F. G. Powell and L. M. Hogan: Trans Met Soc AIME Vol.242 (1968),p.2133.

Google Scholar

[19] W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans Tech Publications, Switzerland – Germany – UK - USA (1984).

Google Scholar

[20] M. C. Flemings, Soldification Processing, McGRAW-HILL, New Yok (1974).

Google Scholar

[21] B. Willers, S. Eckert, U. Michel, I. Haase, G. Zouhar: Mater. Sci. Eng. A Vol.402 (2005), p.55.

Google Scholar

[22] H. Q. Hu. Principle of Metal Solidification,China Machine Press, Beijing (2000).

Google Scholar

[23] W. F. Smith, Foundation of Materials Science and Engineering 3rd ed., McGraw-Hill (2004).

Google Scholar