[1]
Basso, B., Ritchie, J. T., Piece, F. J., Braga, R. P., Jones, J. W., 2001. Spatial validation of crop models for precision agriculture. Agricultural Systems, 68, 97-112.
DOI: 10.1016/s0308-521x(00)00063-9
Google Scholar
[2]
Bréda N.J.J., 2008. Leaf Area Index. Encyclopedia of Ecology, 2148-2154.
DOI: 10.1016/b978-008045405-4.00849-1
Google Scholar
[3]
Boegh, E., Soegaarda, H., Brogeb, N., Hasagerc, C. B., Jensenc ,N. O., Scheldeb, K., Thomsen, A., 2002. Airborne multi-spectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81, 179–193.
DOI: 10.1016/s0034-4257(01)00342-x
Google Scholar
[4]
Cheng, G. W., Yu, Y., (1999). Study on the light compensation point of cotton Leaf and the most large leaf area index of cotton field. Journal of Xinjiang Agricultural University, 22(1), 9-14. (in Chinese with English abstract)
Google Scholar
[5]
Cohen, W. B., Maiersperger, T. K., Gower, S. T., Turner, D. P., 2003. An improved strategy for regression of biophysical variables and LANDSAT-ETM+ data. Remote Sensing of Environment, 84, 561–571.
DOI: 10.1016/s0034-4257(02)00173-6
Google Scholar
[6]
Darvishzadeh R., Skidmore A., Schlerf M., Atzberger C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 112(5), 2008, 2592-2604.
DOI: 10.1016/j.rse.2007.12.003
Google Scholar
[7]
Doraiswamy P. C., Moulin S., Cook P. W., Stern A., 2003. Crop yield assessment from remote sensing. Photogrammetric Engineering and Remote Sensing, 69(6), 665–674.
DOI: 10.14358/pers.69.6.665
Google Scholar
[8]
Garrigues, S., Allard, D., Baret, F., Weiss, M., 2006. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sensing of Environment, 105, 286–298.
DOI: 10.1016/j.rse.2006.07.013
Google Scholar
[9]
González-Sanpedro, M.C., Toan, T. L., Moreno, J., Kergoat, L., Rubio, E., 2008. Seasonal variations of leaf area index of agricultural fields retrieved from LANDSAT data. Remote Sensing of Environment, 112, 810-824.
DOI: 10.1016/j.rse.2007.06.018
Google Scholar
[10]
Hansen, P. M., Schjoerring, J. K., 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542–553.
DOI: 10.1016/s0034-4257(03)00131-7
Google Scholar
[11]
Hoogenboom G., 2000. Contribution of agro-meteorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology, 103, 137–157.
DOI: 10.1016/s0168-1923(00)00108-8
Google Scholar
[12]
Houborg R., Anderson M., Daughtry C., 2009. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sensing of Environment, 113, 259–274.
DOI: 10.1016/j.rse.2008.09.014
Google Scholar
[13]
Jones, D., Barnes, E. M., 2000. Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Agricultural Systems, 65, 137-158.
DOI: 10.1016/s0308-521x(00)00026-3
Google Scholar
[14]
Lawless, C., Semenov, M. A., Jamieson P. D., 2005. A wheat canopy model linking leaf area and phenology. Europ. J. Agriculture, (22), 19–32.
DOI: 10.1016/j.eja.2003.11.004
Google Scholar
[15]
Li, M. C., Zhang, W. F., Ma, F. Y., Lv X., Jiang, G. Y., Wang, K. R., 1999. Research on photosynthetic physiological basis of cotton super-high-yield in Xinjiang. Journal of Xinjiang Agricultural University, 22(4), 276-282. (in Chinese with English abstract)
Google Scholar
[16]
Luo, H. H., Zheng, W. F., Zhao, R. H., Han, C. L., 2006. Effects of planting densities on canopy apparent photosynthesis, canopy structure and yield of cotton drip-irrigated under the mulch in Xinjiang. Chinese Journal of Eco-Agriculture, 4(4), 113-114. (in Chinese with English abstract)
Google Scholar
[17]
Lv, X., Zhang, W., Cao, L. P., 2005. Effect of different density on cotton canopy structure, photosynthesis and yield formation in high-yield cotton of Xinjiang. Acta Agriculture Boreali-occidentalis Sinica, 14(1), 142-148. (in Chinese with English abstract)
Google Scholar
[18]
Ma, F. Y., Li, J. H., Li, M. S., Yang, J. R., 1999. Study on increased yield mechanism under mulch drip irrigation and main coordinated Techniques. Journal of Xinjiang Agricultural University, 22(1), 63-68. (in Chinese with English abstract)
Google Scholar
[19]
Maire G. L., Marsden C., Verhoef W., Ponzoni F. J., Seen D. L., Bégué A., Stape J. L., Nouvellon Y, 2011. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. Remote Sensing of Environment, 115, 586–599.
DOI: 10.1016/j.rse.2010.10.004
Google Scholar
[20]
Moran M.S., Inoue Y., Barnes E.M., 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61, 319-346.
DOI: 10.1016/s0034-4257(97)00045-x
Google Scholar
[21]
Myneni, R. B., 2003. Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests. Remote Sensing of Environment, 85, 410–423.
DOI: 10.1016/s0034-4257(03)00017-8
Google Scholar
[22]
Nagler, P. L., Glenn, E. P., Thompson, T. L., Huete A., 2004. Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology, 125, 1–17.
DOI: 10.1016/j.agrformet.2004.03.008
Google Scholar
[23]
Richard, E. P., Thomas, A. K., Lowell, J. Z., Daniel, S. M., 1998. A qualitative simulation model for cotton growth and development. Computers and Electronics in Agriculture, 20, 165–183.
Google Scholar
[24]
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., Briggs, J. M., 1999. Relationships between leaf Area index and LANDSAT-TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment, 70, 52–68.
DOI: 10.1016/s0034-4257(99)00057-7
Google Scholar
[25]
Yu, Y., Chen, G. W., Lin, H., Wang, B., 2001. Research on the change of leaf area index in north Xinjiang. Cotton Science, 13(5), 300-303. (in Chinese with English abstract)
Google Scholar
[26]
Zhang, W. F., Wang, Z. L., Yu, S. L., Li, S. K., Cao, L. P., Wang D. W., 2002. Effect of nitrogen on canopy Transactions of the photosynthesis and yield formation in high-yielding cotton of Xinjiang. Acta Agronomica Sinica, 28(6), 789-796. (in Chinese with English abstract)
Google Scholar
[27]
Zhou, Y. G., Zhang, J. S., Zhu, D. Y., 1997. Study on community figuration and nutrient physiology in high-yield plot of cotton. .Journal of Xinjiang Agricultural University, 20(1), 12-14. (in Chinese with English abstract)
Google Scholar
[28]
Zhang, W. F., Gou, L., Du, L., Li, M. C., 2000. Cotton colony (1800kg·hm-2) of north Xinjiang. Cotton Science, 12(1), 27-31. (in Chinese with English abstract)
Google Scholar
[29]
Zheng, Z., Ma, F. Y., Li, L. H., Wu, Z. Y., Wang F., 2002. The diagnostic index and optimized regulating route of high-yield population quality on mulch drip irrigation cotton. Cotton Science, 14(5), 300-304. (in Chinese with English abstract)
Google Scholar
[30]
Zheng, Z., Ma, F. Y., Mu, Z. X., Li, J. H., 2000. Study of coupling effects and water-fertilizer model on mulched cotton by drip irrigation. Cotton Science, 12(4), 198-201. (in Chinese with English abstract)
Google Scholar
[31]
Zhou, Y. Q., Zhang, J. S., Chen, B., 1999. Study on population combination of high yield of cotton. Journal of Xinjiang Agricultural University, 22(4), 276-282. (in Chinese with English abstract)
Google Scholar