[1]
Y. Al-Ohali, M. Cheriet, and C. Suen, "Databases for recognition of handwritten Arabic cheques," Pattern Recognition, 36:111–121, 2003.
DOI: 10.1016/s0031-3203(02)00064-x
Google Scholar
[2]
A. Juan and E. Vidal, "On the use of Bernoulli mixture models for text classification," Pattern Recognition, 35(12):2705– 2710, Dec. 2002.
DOI: 10.1016/s0031-3203(01)00242-4
Google Scholar
[3]
Hu. J and Yan. H, " Structural primitive extraction and coding for handwritten numeral recognition ," Pattern Recognition, 1998, 31 (5): 493-509.
DOI: 10.1016/s0031-3203(97)00095-2
Google Scholar
[4]
G. Henkelman, G.Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).
Google Scholar
[5]
R. O. Duda and P. E. Hart, "Pattern Classification and Scene Analysis", Wiley, (1973)
Google Scholar
[6]
J. Dong, A. Krzyzak, "Local learning framework for handwritten character recognition", Engineering Applications of Artificial Intelligence, 2002 , 15 (2) , p.151~159
DOI: 10.1016/s0952-1976(02)00024-6
Google Scholar
[7]
Bailing Zhang, Minyue Fu , Hong Yan , "Handwritten digit recognition by adaptive-subspace self-organizing map" IEEE Trans1 Neural Network , 1999 , 10(4) : 589~603
DOI: 10.1109/72.774267
Google Scholar
[8]
C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, "Handwritten Digit Recognition: Benchmarking of State-of-the-Art Techniques," Pattern Recognition, vol. 36, no. 10, pp.2271-2285, 2009.
DOI: 10.1016/s0031-3203(03)00085-2
Google Scholar