Natural Convection in a Cavity Partially Filled with a Vertical Porous Medium

Article Preview

Abstract:

The shear stress jump boundary condition that must be imposed at an interface between a porous medium and a free fluid in an enclosure is investigated. Two-domain approach is founded and finite element method is used to solve the problem. Three stress jump coefficients 0, 1, -1 are analyzed for different Rayleigh number, permeability and thickness of porous layer. Variation of Maximum stream function and Nusselt number show stronger convection and heat transfer when the stress jump coefficient is positive. There is little distinctive in flow and heat transfer when the value of coefficient is equal to 0 and -1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-18

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S. Beavers, D.D. Joseph, Boundary Conditions at a Naturally Permeable Wall[J], J. Fluid Mech, 30(1), 197–207, (1967).

DOI: 10.1017/s0022112067001375

Google Scholar

[2] J. A. Ochoa-Tapia, S. Whitaker, Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid-I. Theoretical Development[J], Int. J. Heat Mass Transfer, 38(4), 2635-2646, (1995).

DOI: 10.1016/0017-9310(94)00346-w

Google Scholar

[3] J. A. Ochoa-Tapia, S. Whitaker, Momentum Transfer at the Boundary between a Porous Medium and a Homogeneous Fluid-II. Comparison with Experiment[J], Int. J. Heat Mass Transfer, 38(14), 2647-2655, (1995).

DOI: 10.1016/0017-9310(94)00347-x

Google Scholar

[4] M. Khakpour, K. Vafai, Analysis of Transport Phenomena within PEM Fuel Cells–An Analytical Solution[J], Int. J. Heat Mass Transfer, 51(15-16), 3712–3723, (2008).

DOI: 10.1016/j.ijheatmasstransfer.2007.12.013

Google Scholar

[5] A. C. Baytas, A. F. Baytas, D. B. Ingham, I. Pop, Double Diffusive Natural Convection in an Enclosure Filled with a Step Type Porous Layer: Non-Darcy Flow[J], International Journal of Thermal Sciences, 48(4), 665–673, (2009).

DOI: 10.1016/j.ijthermalsci.2008.06.001

Google Scholar

[6] H. C. Chan, W. C. Huang, J. M. Leu, C. J. Lai, Macroscopic Modeling of Turbulent Flow over a Porous Medium[J], Int. J. Heat and Fluid Flow, 28(5), 1157–1166, (2007).

DOI: 10.1016/j.ijheatfluidflow.2006.10.005

Google Scholar

[7] C. Deng, D. M. Martinez, Viscous Flow in a Channel Partially Filled with a Porous Medium and Withwall Suction[J], Chemical Engineering Science, 60(2), 329–336, (2005).

DOI: 10.1016/j.ces.2004.08.010

Google Scholar

[8] H. Tan, K. M. Pillai, Finite Element Implementation of Stress-jump and Stress-continuity Conditions at Porous-medium[J], Clear-fluid Interface, Computers & Fluids, 38(6), 1118-1131, (2009).

DOI: 10.1016/j.compfluid.2008.11.006

Google Scholar

[9] M. Mishra, A. R. Rao, Peristaltic Transport in a Channel with a Porous Peripheral Layer: Model of a Flow in Gastrointestinal Tract[J], Journal of Biomechanics, 38(4), 779–789, (2005).

DOI: 10.1016/j.jbiomech.2004.05.017

Google Scholar

[10] X. B. Chen, P. Yu, Y. Sui, S. H. Winots, H. T. Low, Natural convection in a cavity filled with porous layers on the top and bottom walls[J], Transp Porous Med, 78:, 259-276, (2009).

DOI: 10.1007/s11242-008-9300-2

Google Scholar