Characterization of the Response of Embedded Thermocouples in Grinding

Article Preview

Abstract:

Temperature measurement in grinding has been a widely analyzed field in the study of the process. Temperatures in grinding are too difficult to measure due to the high gradients in the ground workpiece. A lot of different methods have been employed by many researches in the last years. In this paper the use of thermocouples is analyzed attending to the mathematical characterization of their response. It will be shown that correct modeling of the thermocouple’s response permits the avoidance of the problem of thermal inertia, making thus possible the use commercial thermocouples for temperature measurement in grinding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-18

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F.G. Oliveira, E.J. Silva, C. Guo, F. Hashimoto, Industrial challenges in grinding, Annals of the CIRP 58 (2009) 663-680.

DOI: 10.1016/j.cirp.2009.09.006

Google Scholar

[2] I. D. Marinescu, W. B. Rowe, B. Dimitrov, I. Inasaki: Trybology of abrasive machining (William Andrews publishing, 2004).

Google Scholar

[3] D.A. Doman, A. Warkentin and R. Bauer, Finite element modeling approaches in grinding, International Journal of Machine Tools & Manufacture 49 (2009) 109–116.

DOI: 10.1016/j.ijmachtools.2008.10.002

Google Scholar

[4] E. Brinksmeier, J. C. Aurich, E. Govekar, C. Heinzel, H. -W. Hoffmeister, F. Klocke, J. Peter, R. Rentsch, D. J. Stephenson, E. Uhlmann, K. Weinert, M. Witmann, Advances in Modeling and Simulation of Grinding Processes, Annals of the CIRP 55 (2006).

DOI: 10.1016/j.cirp.2006.10.003

Google Scholar

[5] R. P. Upadhyaya, S. Malkin, Thermal aspects of grinding with electroplated CBN wheels, Tans. ASME. Journal of Manufacturing Science Engineering 126 (2004) 107-114.

DOI: 10.1115/1.1644547

Google Scholar

[6] A. Lefebvre, P. Vieville, P. Lipinski, C. Lescalier. Numerical Analysis of grinding temperature measurement by the foil/workpiece thermocouple method, International Journal of Machine Tools & Manufacture, 46 (2006) 1716-1726.

DOI: 10.1016/j.ijmachtools.2005.12.009

Google Scholar

[7] T. Kuriyagawa, K. Syoji, H. Ohshita, Grinding temperature within contact arc between wheel and workpiece in high-efficiency grinding of ultrahard cutting tool materials, Journal of Materials Processing Technologies, 136 (2003) 39-47.

DOI: 10.1016/s0924-0136(02)00842-7

Google Scholar

[8] I. Zarudi, L. C. Zhang, A revisit to some wheel-workpiece interaction problems in surface grinding, International Journal of Machine Tools & Manufacture, 42 (2002) 905-913.

DOI: 10.1016/s0890-6955(02)00024-x

Google Scholar

[9] X. Xu, S. Malkin Comparison of Methods to Measure Grinding Temperatures, Trans. ASME, Journal of Manufacturing Science Enggineering, 123 (2001) 191-195.

DOI: 10.1115/1.1369358

Google Scholar

[10] T. Jin, D. J. Stephenson, Three Dimensional Finite Element Simulation of transient Heat Transfer in High Efficiency Deep Grinding, Annals of the CIRP. 53/1 (2004) 259-262.

DOI: 10.1016/s0007-8506(07)60693-3

Google Scholar

[11] A. D: Batako, W. B. Rowe, M. N. Morgan, Temperature measurement in high efficiency deep grinding, International Journal of Machine Tools & Manufacture, 45 (2005) 1231-1245.

DOI: 10.1016/j.ijmachtools.2005.01.013

Google Scholar

[12] J. A. Sánchez, I. Pombo, R. Alberdi, B. Izquierdo, N. Ortega, S. Plaza, J. Martínez-Toledano, Machining evaluation of a hybrid MQL-CO2 grinding technology, Journal of Cleaner Production, 18 (2010) 1840-1849.

DOI: 10.1016/j.jclepro.2010.07.002

Google Scholar