The Effect of WC Doping on the Electrochemical Behavior of Nanosilicon/CMC/AB Composite Electrode

Article Preview

Abstract:

Silicon is the most attractive anode material of all known host materials for lithium ion batteries because of its high theoretical lithium-insertion capacity up to 4200 mAh g-1, but it is difficult to be applied for its poor cyclability caused by the mechanical invalidation for the insertion of lithium ions. Nanosilicon/CMC/AB composite electrodes doped with WC were prepared by ball milling. The effect of the structure transformation of the doped electrode on the electrochemical behavior was systematically analyzed by X-ray diffraction. The mechanical properties of doped silicon electrode play an important role on its long-term electrochemical stability. The capacity retention could be maintained about 90% after 40 cycles. It was demonstrated that the cycling stability of the nanosilicon composite electrode could get a great promotion by WC doping. The intensification of the mechanical properties is critical to enhance the performance of the composite electrode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1585-1588

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Yang, M. Wachtler, M. Winter, J. O. Besenhard: Electrochem. Solid-state Lett Vol. 2 (1999), p.161.

Google Scholar

[2] L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, A. Bonakdarpour, A. A. Abdo, L. Christensen, K. W. Eberman, L. J. Krause, and J. R. Dahn: J. Electrochem. Soc Vol. 150 (2003), p. A149.

DOI: 10.1149/1.1530151

Google Scholar

[3] P. Limthongkul, Y. Jang, N. J. Dudney, Y. M. Chiang: Acta. Materialia Vol. 5 (2003), p.11103.

Google Scholar

[4] A. Netz, R. A. Huggins, W. Weppner: J. Power Sources Vol. 119-121(2003), p.95.

Google Scholar

[5] H. Kim, B. Han, J. Choo, and J. Cho: Angew. Chem. Int. Ed Vol. 47 (2008), p.10151.

Google Scholar

[6] L. Lacroix-Orio, M. Tillard, D. Zitoun, and C. Belin: Chem. Mater Vol. 20 (2008), p.1212.

Google Scholar

[7] C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, Y. Cui: J. Power Sources Vol. 189 (2009), p.34.

Google Scholar

[8] M. G. Kim and J. Cho: Adv. Funct. Mater Vol. 19 (2009), p.1497.

Google Scholar

[9] W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, and N. L. Wu: Electrochem. Solid-State Lett Vol. 8 (2005), p. A100.

Google Scholar

[10] J. Li, H. M. Dahn, L. J. Krause, D. B. Le and J. R. Dahn: J. Electrochem. Soc Vol. 155 (2008), p. A812.

Google Scholar

[11] J. Li, R. B. Lewis and J. R. Dahn: Electrochem. Solid-State Lett Vol. 10 (2007), p. A17.

Google Scholar

[12] R. R. Garsuch, D. B. Le, A. Garsuch, J. Li, S. Wang, A. Farooq and J. R. Dahn: J. Electrochem. Soc Vol. 155 (2008), p. A721.

DOI: 10.1149/1.2956964

Google Scholar

[13] J. -S. Bridel, T. Azais, M. Morcrette, J. -M. Tarascon and D. Larcher: Chem. Mater Vol. 22 (2010), p.1229.

Google Scholar

[14] S. D. Beattie, D. Larcher, M. Morcrette, B. Simon and J. -M. Tarascon: J. Electrochem. Soc Vol. 155 (2008), p. A158.

Google Scholar

[15] M. N. Obrovac and L. Christensen: Electrochem. Solid-State Lett Vol. 7 (2004), p. A93.

Google Scholar

[16] S. Ohara, J. Suzuki, K. Sekine, T. Takamur: J. Power Sources Vol. 119–121 (2003), p.591.

Google Scholar

[17] Junshik Kim, EJEAFChe, Vol. 6 (2007), p.2458.

Google Scholar