The Use of Rapid Prototyping to Fabricate Liver Tissue Engineering Scaffold

Article Preview

Abstract:

In this papers, the authors described a rapid prototyping method to produce vascularized tissue such liver scaffold for tissue engineering applications. A scaffold with interconnected channel was designed using CAD environment. The data were transferred to a Polyjet 3D Printing machine (Eden 250, Object, Israel) to generate the models. Based on the 3D Printing model, a PDMS (polydimethyl-silicone) mould was created which can be used to cast the biodegradable poly (L-lactic-co-glycolic acid) (PLGA )material. The advantages and limitations of Rapid Prototyping (RP) techniques as well as the future direction of RP development in tissue engineering scaffold fabrication were reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

658-661

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Lorenzini, P. Andreone: Stem Cells 2007; 25(9): 2383-2384.

Google Scholar

[2] L. G. Griffith & G. Naughton: Science 295, 1009–1014 (2002).

Google Scholar

[3] G. F. Muschler, C. Nakamoto & L. G. Griffith: J. Bone Joint Surg. Am. 86-A, 1541–1558 (2004).

Google Scholar

[4] U. A. Stock & J. P. Vacanti: Annu. Rev. Med. 52, 443–451 (2001).

Google Scholar

[5] E. Rabkin and F. J. Schoen: Cardiovasc Pathol., 11(6), 305–317 (2002).

Google Scholar

[6] L. Budyanto, Y.Q. Goh, C.P. Ooi: J. Mater. Sci. Mater. Med. 2009, 20, 105–111.

Google Scholar

[7] C.A. Bashur, R.D. Shaffer, et al: Tissue Eng. Part A 2009, 15, 2435–2445.

Google Scholar

[8] L.G. Cima, J.P. Vacanti, et al: J. Biomech Eng T ASME 113: 143-151.

Google Scholar

[9] J. Guan, K.L. Fujimoto, et al: Biomaterials 2005, 26, 3961–3971.

Google Scholar

[10] L.D. Harris, B.S. Kim, D.J. Mooney: J. Biomed Mater Res 1998; 42(3): 396–402.

Google Scholar

[11] R.G. Heijkants et al: J. Biomed. Mater. Res. A 2008, 87, 921–932.

Google Scholar

[12] Q. Hou, D.W. Grijpma, J. Feijen: J. Biomed. Mater. Res. B Appl. Biomater. 2003, 67, 732–740.

Google Scholar

[13] Y.Y. Hsu, J.D. Gresser, D.J. Trantolo, C.M. Lyons: J Biomed Mater Sci (1997), 35: 107-116.

Google Scholar

[14] E Karamouk, J Mayer, et al: Artif Organs 1999; 23(9): 881–7.

Google Scholar

[15] S.V. Madihally, H.W. Matthew: Biomaterials 1999, 20, 1133–1142.

Google Scholar

[16] D.J. Mooney, D.F. Baldwin, N.P. Suh, et al: Biomaterials (1996), 17: 1417-1422.

Google Scholar

[17] W.L. Murphy, R.G. Dennis, J.L. Kileny, et al: Tissue Eng. 2002, 8, 43–52.

Google Scholar

[18] Y.S. Nam, J.J. Yoon, T.G. Par: J. Biomed. Mater. Res. 2000, 53, 1–7.

Google Scholar

[19] M Reuber, L.S. Yu, W.J. Kolff: Artif Organs (1987) 11: 323-323.

Google Scholar

[20] H Schoof, J Apel, I Heschel, G Rau (2001): J Biomed Mater Res-A 58: 352-357.

Google Scholar

[21] H Schoof, L Burns, A Fisher, et al (2000): J Cryst Growth 209: 122-129.

Google Scholar

[22] V.P. Shastri, I Martin, R Langer: Proc Natl Acad Sci USA 2000; 97(5): 1970–5.

Google Scholar

[23] K. Shin, A.C. Jayasuriya, D.H. Kohn: J. Biomed. Mater. Res. A 2007, 83, 1076–1086.

Google Scholar

[24] RC Thompson, M.J. Yaszemski, et al (1995a): J Biomater Sci-Polym E 7: 23-38.

Google Scholar

[25] P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, J. Feijen: J. Polym. Sci. Pol. Phys. 1996, 34, 2553–2568.

DOI: 10.1002/(sici)1099-0488(19961115)34:15<2553::aid-polb3>3.0.co;2-u

Google Scholar

[26] J.M. Williams, A. Adewunmi, et al: Biomaterials 2005, 26, 4817–4827.

Google Scholar

[27] B. Starly, and W. Sun: VDM Verlag 2007, ISBN: 978-8364-2464-6.

Google Scholar

[28] I. Zein, D.W. Hutmacher, et al: Biomaterials 23 (2002) 1169–1185.

Google Scholar

[29] K.U. Koch, B. Biesinger, C. Arnholz, and V. Jansson: Rapid News Publication (1998), pp.209-14.

Google Scholar

[30] B.M. Wu, S.W. Borland, R.A. Giordano, et al: Journal of Controlled Release, (1996), Vol. 40, pp.77-87.

Google Scholar

[31] I.W. Zein, D.W. Hutmacher, K.C. Tan, and S.H. Toch: Biomaterials (2002), Vol. 23, pp.1169-85.

Google Scholar

[32] T.B. Woodfield, J. Malda, J. de Wijn, et al: Biomaterials 25 (2004)4149–4161.

Google Scholar

[33] S.S. Kim, H. Utsunomiya, J.A. Koski, et al: Ann. Surg. 228 (1998) 8–13.

Google Scholar

[34] J. Zeltinger, J.K. Sherwood, D.A. Graham, et al: Tissue Eng. 7 (2001) 557–572.

Google Scholar

[35] J.M. Taboas, R.D. Maddox, et al: Biomaterials 24 (2003) 181–194.

Google Scholar