The Preparation and Characterization of Solid Superacid S2O82-/SnO2-SiO2

Article Preview

Abstract:

The new type of solid superacid S2O82-/SnO2-SiO2 was prepared by precipitation and hydrothermal aging method with ammonium persufate as soaker instead of sulphuric acid. The samples with different tin oxide content were characterized by FT-IR, XRD, BET, TG/DTA and Hammett indicators techniques. Catalytic activities for esterification of butanol and acetic acid were also investigated. As a result, most sulfate-ion in surface of S2O82-/SnO2-SiO2 coordinate with Sn bidentatly, and the acidic strength of S2O82-/SnO2-SiO2 is related to the content of tin oxide. Besides, introducing appropriate Si can improve the combination of the tin with SO42- thus increases the amount of acid. Catalyst S2O82-/SnO2-SiO2 reveals high catalytic activity and stability in the esterification at very large range of composition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

212-217

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.M. Reddy, P.M. Sreekanth, V.R. Reddy. Modified zirconia solid acid catalysts for organic synthesis and transformations. Journal of Molecular Catalysis, A: 225 (2005) 71.

DOI: 10.1016/j.molcata.2004.09.003

Google Scholar

[2] G.D. Yadav , G.S. Pathre. Novel mesoporous solid superacids for selective C-alkylation of m-cresol with tert-butanol. Microporous and Mesoporous Materials, 89 (2006) 16.

DOI: 10.1016/j.micromeso.2005.07.047

Google Scholar

[3] H.L. Yin, Z.Y. Tan, Y.T. Liao, Y.J. Feng. Application of SO42−/TiO2 solid superacid in decontaminating radioactive pollutants. Journal of Environmental Radioactivity, 87 (2006) 227.

DOI: 10.1016/j.jenvrad.2005.11.009

Google Scholar

[4] G.D. Yadav, G.S. Pathre. Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. Journal of Molecular Catalysis A: Chemical 243 (2006) 77.

DOI: 10.1016/j.molcata.2005.08.024

Google Scholar

[5] J.C. Juan, Y. Jiang, X. Meng, W. Cao, M.A. Yarmo, J. Zhang, Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst Materials Research Bulletin 42 (2007) 1278.

DOI: 10.1016/j.materresbull.2006.10.017

Google Scholar

[6] B.M. Reddy, P.M. Sreekanth, P. Lakshmanan. A. Khan. Synthesis, characterization and activity study of SO42−/CexZr1−xO2 solid superacid catalyst. Journal of Molecular Catalysis A: Chemical 244 (2006) 1.

DOI: 10.1016/j.molcata.2005.08.054

Google Scholar

[7] J.R. Sohn, S.H. Lee, J.S. Lim. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catalysis Today 116(2006) 143.

DOI: 10.1016/j.cattod.2006.01.023

Google Scholar

[8] J. Wang, P.P Yang, M.Q Fan. Wei Yu, X.Y Jing, M.L Zhang, X. Duan. Preparation and characterization of novel magnetic ZrO2/TiO2/Fe3O4 solid superacid. Materials Letters 61(2007) 2235.

DOI: 10.1016/j.matlet.2006.08.054

Google Scholar

[9] X.C Wang, J.C. Yu, P. Liu. X.X Wang, W.Y Su, X.Z Fu. Probing of photocatalytic surface sites on SO42−/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. Journal of Photochemistry and Photobiology A: Chemistry 179(2006) 339.

DOI: 10.1016/j.jphotochem.2005.09.007

Google Scholar

[10] M. Hino, K. Arata, One-step preparation of manganese-, Iron-, and aluminium-promoted sulfated zirconias for reaction of butane to isobutane. React.Kinet.Catal.Lett., 81(2004) 321.

DOI: 10.1023/b:reac.0000019439.37417.ab

Google Scholar

[11] P. Salas, J.G. Hernández, J.A. Montoya, J. Navarrete, J. Salmones, I. Schifter, J. Morales, Effect of tin content on silica mixed oxides: Sulfated and unsulfated catalysts. Journal of Molecular Catalysis A: Chemical 123 (1997) 149.

DOI: 10.1016/s1381-1169(97)00054-x

Google Scholar

[12] S. Furuta, H. Matsuhashi, K. Arata. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications 5 (2004) 721.

DOI: 10.1016/j.catcom.2004.09.001

Google Scholar

[13] K. Arata, H. Nakamura, M. Shouji, Friedel–Crafts acylation of toluene catalyzed by solid superacids. Applied Catalysis A: General 197 (2000) 213.

DOI: 10.1016/s0926-860x(99)00484-6

Google Scholar

[14] M. Hino, S. Takasaki, S. Furuta. et al.. meta-Stannic acid as an effective support for the preparation of sulfated and tungstated stannias. Applied Catalysis A: General, 321(2007) 147.

DOI: 10.1016/j.apcata.2007.01.044

Google Scholar

[15] S. Furuta, H. Matsuhashi, K. Arata, Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Applied Catalysis A: General 269 (2004) 187.

DOI: 10.1016/j.apcata.2004.04.017

Google Scholar

[16] H. Matsuhashi, H. Miyazaki, Y. Kawamura. et al.. Preparation of a Solid Superacid of Sulfated Tin Oxide with Acidity Higher Than That of Sulfated Zirconia and Its Applications to Aldol Condensation and Benzoylation. Chem. Mater. 13 (2001) 3038.

DOI: 10.1021/cm0104553

Google Scholar

[17] J.R. Sohn, H.W. Kim, M.Y. Park, E.H. Park, J.T. Kim, S.E. Park, Highly active catalyst of NiO—ZrO2 modified with H2SO4 for ethylene dimerization. Appl. Catal. A: Gen. 128 (1995) 127.

DOI: 10.1016/0926-860x(95)00057-7

Google Scholar