Preparation and Properties of Nanocomposites Based on Poly(Vinyl acetate) and Montmorillonite Organized with Acrylic Acid

Article Preview

Abstract:

The nanocomposites of poly(vinyl acetate)/montmorillonite (PVAc/MMT) were prepared using vinyl acetate and organically modified alkaline calcium base montmorillonite (MMT) by in situ emulsion copolymerization. The organic modification was acrylic acid including terminal reactive vinylic group. The samples were characterized using fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD). Thermal properties of the PVAc/MMT films were studied by thermogravimetric (TG) and differential scanning calorimetric (DSC). The FT-IR results indicated that the vinyl group on the surface of the vinyl MMT nanoparticles had been successfully copolymerized with vinyl acetate. The XRD results demonstrated that the MMT was exfoliated during polymerization. The exfoliated PVAc/MMT nanocomposites showed a lower glass transition temperature (Tg) and a worse thermal stability compared with the pure PVAc. However, bonding power of the nanocomposite latex of PVAc/MMT was improved due to the strong interaction between silica nanoparticles and polymer matrix via covalent bonds.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

3-11

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ramanan Krishnamoorti, Richard A. Vaia, Emmanuel P. Giannelis: Chem. Mater. Vol. 8 (1996), pp.1728-1734

Google Scholar

[2] Yeong Suk Choi, Ki Hyun Wang, Mingzhe Xu, In Jae Chung: Chem. Mater. Vol. 14 (2002), pp.2936-2939

Google Scholar

[3] V. Mittal: J. Mater. Sci. Vol. 43 (2008), p.4972–4978

Google Scholar

[4] Sritama Kar, Pradip K. Maj, Anil K. Bhowmick: J. Mater. Sci. Vol. 45 (2010), p.64–73.

Google Scholar

[5] Hongguang Dai, Peter R. Chang, Fengying Geng, Jiugao Yu, Xiaofei Ma: J. Polym. Environ. Vol. 17 (2009), p.225–232

Google Scholar

[6] Jae Hyeung Park, Mohammad Rezaul Karim, In Kyo Kim, In Woo Cheong, Jong Won Kim, Do Gyu Bae, Jin Won Cho, Jeong Hyun Yeum: Colloid. Polym. Sci. Vol. 288 (2010), p.115–121

DOI: 10.1007/s00396-009-2147-4

Google Scholar

[7] Marco Zanetti, Giovanni Camino, Rolf Mulhaupt: Polym. Degrad. Stab. Vol. 74 (2001), 413–417.

Google Scholar

[8] M. L. López-Quintanilla, S. Sánchez-Valdés, L. F. Ramos de Valle, R. Guedea Miranda: Polym. Bull. Vol. 57 (2006), p.385–393

DOI: 10.1007/s00289-006-0555-x

Google Scholar

[9] Gabriela Diaconu, Maria Paulis, Jose R. Leiza: Polymer, Vol. 49 (2008), p.2444–2454

Google Scholar

[10] Xin Jia, Yanfeng Li, Bo Zhang, Qiong Cheng, Shujiang Zhang: Mater. Res. Bull. Vol. 43 (2008), p.611–617

Google Scholar

[11] Chia-Hsin Lee, An-Ting Chien, Ming-Huei Yen, King-Fu Lin: J. Polym. Res. Vol. 15 (2008), p.331–336

Google Scholar

[12] Amin Salem, Leila Karimi: Korean J. Chem. Eng. Vol. 26 (2009), pp.980-984

Google Scholar

[13] Suprakas Sinha Ray, Masami Okamoto: Prog. Polym. Sci. Vol. 28 (2003), p.1539–1641

Google Scholar

[14] Hasmukh A Patel, Rajesh S Somani, Hari C Bajaj, Raksh V Jasra: Bull. Mater. Sci. Vol. 29 (2006), pp.133-145

Google Scholar

[15] D.R. Paul, L.M. Robeson: Polymer, Vol. 49 (2008), p.3187–3204

Google Scholar

[16] Mingzhe Xu, Yeong Suk Choi, Yoon Kyung Kim, Ki Hyun Wang, In Jae Chung: Polymer, Vol. 44 (2003), p.6387–6395

Google Scholar

[17] J. P. Zheng, J. X. Wang, S. Gao, K. D. Yao: J. Mater. Sci. Vol. 40 (2005), pp.4687-4689

Google Scholar

[18] O. Yilmaz, C.N. Cheaburu, D. Durraccio, G. Gulumser, C. Vasile: App. Clay. Sci. Vol. 49 (2010), p.288–297

DOI: 10.1016/j.clay.2010.06.007

Google Scholar

[19] Tengyou Wei, Zhang fa Tong, Xu Wu, Chinese patent 200,510,101,332. (2005)

Google Scholar

[20] Tengyou Wei, Zhangfa Tong, Qilin Li, Hanghui Fu, Chengxiang Gao, Chengdu Huang, Chinese patent 200,710,027,154. (2007)

Google Scholar

[21] Zhiwei Sun, Shenghua Xu, Guoliang Dai, Yinmei Li, Liren Lou, Qiusheng Liu: J. Chem. Phys. Vol. 22 (2003), p.2399−2405

Google Scholar

[22] M. Zanetti, G. Caminoa, R. Thomannb, R.Mu Èlhaupt: Polymer, Vol. 42 (2001), pp.4501-4507

Google Scholar

[23] Francesco Trotta, Marco Zanetti, Giovanni Camino: Polym. Degrad. Stab. Vol. 69 (2000), pp.373-379

Google Scholar

[24] Marco Zanetti, Giovanni Caminoa, Rolf Mulhaupt: Polym. Degrad. Stab. Vol. 74 (2001), p.413–417

Google Scholar

[25] A. Riva,M. Zanetti, M. Bragliab, G. Camino, L. Falqui: Polym. Degrad. Stab. Vol. 77 (2002), p.299–304

Google Scholar

[26] M. Zanetti, T. Kashiwagi, L. Falqui, G. Camino: Chem. Mater. Vol. 14 (2002), pp.881-887

Google Scholar

[27] M. Dolores Fernández, M. Jesús Fernández: J. Therm. Anal. Calorim. Vol. 92 (2008), pp.829-837

Google Scholar

[28] Zilg. C, Mulhaupt. R, Finter.J: Macromol. Chem. Phys. Vol. 200 (1999), pp.661-670

Google Scholar

[29] Jenny Faucheu, Catherine Gauthier, Laurent Chazeau, Jean-Yves Cavaillé, Véronique Mellon, Francis Pardal, Elodie Bourgeat Lami: Polymer, Vol. 51 (2010), pp.4462-4471

DOI: 10.1016/j.polymer.2010.07.028

Google Scholar