Study on the Disaggregation of Photosensitizer Pentalysine β-Carbonyl-Phthalocyanine Zinc In Vitro

Article Preview

Abstract:

A novel photosensitizer, pentalysine β-carbonyl-phthalocyanine zinc [ZnPc-(Lys)5] has tendency to form aggregate in aqueous solution. The observed in vivo Photodynamic therapy (PDT) effect of ZnPc-(Lys)5 suggests a disaggregation mechanism. In this study, the equilibrium binding constant Ka, the numbers of binding sites n and the distance of Forster radii r between ZnPc-(Lys)5 and human serum albumin (HSA) are measured by Spectroscopy. A molecular model of HSA-ZnPc-(Lys)5 complex was generated according to these datum. This molecular model provides rationale that the molecular interaction between HSA and ZnPc-(Lys)5 facilitates the dissociation of ZnPc aggregates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

363-367

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. I. Pass: J. Natl. Cancer Inst. 85 (1993), pp.443-456.

Google Scholar

[2] J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon: J. Photochem. Photobiol. B. vol. 24 (1994), pp.195-199.

Google Scholar

[3] J. E. Cruse-Sawyer, J. Griffiths, B. Dixon, S. B. Brown: Brit. J. Cancer. vol. 77 (1998), pp.965-972.

Google Scholar

[4] Jincan Chen, Hongwei Chen, Yongdong Li, Jundong Wang, Naisheng Chen, Jinling Huang, Mingdong Huang. Chem. J. Chinese U. vol. 29 (2008), pp.1-4. (In Chinese)

Google Scholar

[5] Z. Chen, S. Y. Zhou, J. C. Chen, Y. Deng, Z. P. Luo, H. W. Chen, M. R. Hamblin, M. D. Huang: Curr. Med. Chem. vol. 5 (2010), pp.890-898.

Google Scholar

[6] I. Rosenthal: Photochem. Photobio. vol. 53 (1991), pp.859-870.

Google Scholar

[7] Y. Konan, R. Gurny, E. Allemann: J. Photochem. Photobio. B. vol. 66 (2002), pp.89-106.

Google Scholar

[8] T. Jr. Peters: Adv. Protein Chem. vol. 37 (1985), pp.161-245.

Google Scholar

[9] V. Anbazhagan, R. Renganathan: J. Lumin. vol. 128 (2008), pp.1454-1458.

Google Scholar

[10] X. Wei, H. Liu: Chinese J. Anal. Chem. vol. 28 (2000), pp.699-701.

Google Scholar

[11] T. Förster, O.Sinanoglu: Modern Quantum Chemistry (New York 1965).

Google Scholar

[12] S. Kasai, T. Horie, T. Mizuma, S. Awazu: J. Pharm. Sci. vol. 76 (1987), pp.387-392.

Google Scholar

[13] A. Sengupta, D. Hage: Anal.Chem. vol. 71 (1999), pp.3821-3827.

Google Scholar

[14] L. Zhu, F. Yang, L. Chen, E. J. Meehan, M. Huang: J. Struct. Biol. vol. 162 (2008), pp.40-49.

Google Scholar

[15] S. Guo, X. Shi, F. Yang, L. Chen, E. J. Meehan, C. Bian, M. Huang: Biochem. J. vol. 423 (2009), pp.23-30.

Google Scholar

[16] G. Fanali, R. Fesce, C. Agrati, P. Ascenzi, M. Fasano: FEBS J. vol. 272 (2005), pp.4672-4683.

DOI: 10.1111/j.1742-4658.2005.04883.x

Google Scholar