Numerical Exploration of the Defect’s Effect on Mechanical Properties of Nanowires under Torsion

Article Preview

Abstract:

Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

498-501

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Sarkar, G. Khan, A. Basumallick, Bull. Mater. Sci., 30 (2007) 271-290.

Google Scholar

[2] D. Rugar, R. Budakian, H. Mamin, B. Chui, Nature, 430 (2004) 329-332.

DOI: 10.1038/nature02658

Google Scholar

[3] H.S. Park, J.A. Zimmerman, Phys. Rev. B, 72 (2005) 54106.

Google Scholar

[4] M. McDowell, A. Leach, K. Gall, Modell. Simul. Mater. Sci. Eng., 16 (2008) 045003.

Google Scholar

[5] M. Riaz, O. Nur, M. Willander, P. Klason, Appl. Phys. Lett., 92 (2008) 103118.

DOI: 10.1063/1.2894184

Google Scholar

[6] M. McDowell, A. Leach, K. Gall, Nano Lett., 8 (2008) 3613-3618.

Google Scholar

[7] H.S. Park, Nano Lett., 6 (2006) 958-962.

Google Scholar

[8] W. Liang, M. Zhou, F. Ke, Nano Lett., 5 (2005) 2039-2043.

Google Scholar

[9] H.S. Park, C. Ji, Acta Mater., 54 (2006) 2645-2654.

Google Scholar

[10] S. Tyagi, J. Lee, G. Buxton, A. Balazs, Macromolecules, 37 (2004) 9160-9168.

Google Scholar

[11] A. Cao, Y. Wei, E. Ma, Phys. Rev. B, 77 (2008) 195429.

Google Scholar

[12] H.F. Zhan, Y.T. Gu, P.K.D.V. Yarlagadda, Adv. Sci. Lett., (2011 In press).

Google Scholar

[13] S. Jiang, H. Zhang, Y. Zheng, Z. Chen, J. Phys. D: Appl. Phys., 42 (2009) 135408.

Google Scholar

[14] S. Jiang, H. Zhang, Y. Zheng, Z. Chen, J. Phys. D: Appl. Phys., 43 (2010) 335402.

Google Scholar

[15] Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, J. Kress, Phys. Rev. B, 63 (2001) 224106.

Google Scholar

[16] C. Kelchner, S. Plimpton, J. Hamilton, Phys. Rev. B, 58 (1998) 11085-11088.

Google Scholar

[17] J.M. Gere, S. Timoshenko, Mechanics of materials, 4th ed., PWS Pub Co., Boston, 1997.

Google Scholar

[18] Y. Gao, F. Wang, T. Zhu, J. Zhao, Comput. Mater. Sci., (2010).

Google Scholar

[19] W. Cai, W. Fong, E. Elsen, C.R. Weinberger, J. Mech. Phys. Solids, 56 (2008) 3242-3258.

Google Scholar