The Porous TiNb24Zr4 Alloys with Controllable Porosity Fabricated by Conventional Sintering

Article Preview

Abstract:

In the present study, porous titanium alloys were fabricated successfully by mixing titanium, niobium, and zirconium powder with pore-forming agent of ammonium bicarbonate via conventional sintering method. The pore characteristics, such as pore morphology and distribution, mean pore size and porosity of prepared porous TiNb24Zr4 alloy were investigated by optical microscopy, image processing and density determination. It was found that the pore characteristics mainly depended on the shape and size of used ammonium bicarbonate particles in present study. The porosity of the alloys could be tailored by controlling the amount of ammonium bicarbonate addition. The porous TiNb24Zr4 alloys were near β type titanium alloys, which consisted mainly of β phase and a little of α phase. The amount of α phase increased in the porous alloys due to segregation caused by the addition of pore-forming agent.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

797-804

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ryhänen, M. Kallioinen, J. Tuukkanen, P. Lehenkari, J. Junila, E. Niemelä, P. Sandvik and W. Serlo. Biomaterials Vol. 20 (1999), p.1309

DOI: 10.1016/s0142-9612(99)00032-0

Google Scholar

[2] C.A.R.P. Baptista, S.G. Schneider, E.B. Taddei and H.M. da Silva. Int. J. Fatigue Vol. 26 (2004), p.967

Google Scholar

[3] F.A. Muller. M.C. Bottino, L. Muller, V.A.R. Henriques, U. Lohbauer, A.H.A. Bressiani and J.C. Bressiani. Dent. Mater. Vol. 24(2008), p.50

Google Scholar

[4] J.I. Kim, H.Y. Kim. T. Inamura, H. Hosoda and S. Miyazaki. Mater. Sci. Eng., A Vol. 403 (2005), p.334

Google Scholar

[5] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Chin. J. Mater. Res. Vol. 6 (2000), p.561

Google Scholar

[6] P.B. Entchev and D.C. Lagoudas. Mech. Mater. 34 (2002), p.1

Google Scholar

[7] B.Y. Li, L.J. Rong, Y.Y. Li and V.E. Gjunter. Acta Mater. Vol. 48 (2000), p.3895

Google Scholar

[8] B. Yuan, C.Y. Chung, P. Huang and M. Zhu. Mater. Sci. Eng., A Vol. 438-440 (2006), p.657

Google Scholar

[9] B.Y. Li, L.J. Rong and Y.Y. Li. J. Mater. Res. Vol. 13 (1998), p.2847

Google Scholar

[10] C.L. Chu, B. Li, S.D. Wang, S.G. Zhang, X.X. Yang and Z.D. Yin. Trans. Nonferrous Met. Soc. China Vol. 4 (1997), p.85

Google Scholar

[11] B.Y. Li, L.J. Rong, Y.Y. Li and V.E. Gunter. J. Mater. Res. Vol. 15 (2000), p.10

Google Scholar

[12] E.L. Vandygriff, D.C. Lagoudas, K. Thangarai, Y.C. Chen. in Proceedings of ASC 15th Annual Technical Conference (Lancaster, PA: Technomic 2000), p.239

Google Scholar

[13] K. Tangaraj, Y. C Chen and K. Salama. in Proceedings of 2000 ASME International Mechanical Engineering Congress and Exposition (2000), p.59

Google Scholar

[14] I.A. Drozdov. Powder Metall. Met. Ceram. Vol. 34 (1995), p.282

Google Scholar

[15] C.Y. Chung, C.L. Chu and S.D. Wang. Mater. Lett. Vol. 58 (2004), p.1683

Google Scholar

[16] A. Biswas. Acta Mater. Vol. 53 (2005), p.1415

Google Scholar

[17] B.Y. Li, L.J. Rong, Y.Y. Li. Mater. Sci. Eng., A Vol. 255 (1998), p.70

Google Scholar

[18] J. Mentz, L. Krone, M. Bram, H.P. Buchkremer and D. Stoever. Proceeding of Euro PM2005, UK, Volume II, EPMA, (Shrewsbury 2005), p.135

Google Scholar

[19] Z.T. Yu, L. Zhou and K.G. Wang. Rare Metals Letters Vol. 23 (2004), p.5

Google Scholar

[20] T. Zhou, A. Aindow, S.P. Alpay, M.J. Blackburn and M.H. Wu. Scripta Mater. Vol. 50 (2004), p.343

Google Scholar

[21] M. D. Mcneese, D.C. Lagoudas and T.C. Pollock. Mater. Sci. Eng., A Vol. 280 (2000), p.334

Google Scholar

[22] A. Pietrowski and G. biallas. Powder Metall. Vol. 41 (1998), p.109

Google Scholar

[23] A.Y. Chen. Oral implantology . (Sichuan Publishing House of Science & Technology, Chengdu 1991)

Google Scholar

[24] P. S. Liu. Titanium Ind. Prog. (In Chinese) Vol. 22 (2005), p.34

Google Scholar

[25] T. M. Puscas, M. Signorini, A. Molinari and G. Straffelini. Mater. Charact. Vol. 50 (2003), p.1

Google Scholar

[26] ASTM Standard B328. American Society for Testing and Materials, (Philadelphia, PA, 1987)

Google Scholar

[27] M.M. Dewidar and J.K. Li. J. Alloys Compd. Vol. 454 (2008), p.442

Google Scholar

[28] S.M. Green, D.M. Grant and N.R. Kelly. Powder Metall. Vol. 40 (1997), p.43

Google Scholar

[29] Y.P. Zhang, Z.Y. Chung and X.P. Zhang. J. Mater. Sci. Eng. Vol. 25 (2007), p.938

Google Scholar

[30] L. Jia, H. Xie and Z.L. Lu. Foundry Technol. (In Chinese) Vol. 29 (2008), p.395

Google Scholar

[31] H.Q. Zhang. Acta Phys. Sin. Vol. 33 (1984), p.391

Google Scholar

[32] S.J. Simske, R.A. Ayers and T.A. Bateman. Mater. Sci. Forum Vol. 250 (1997), p.151

Google Scholar

[33] P. Y. Huang. Fenmo yejin yuanli. (In Chinese) (Metallurgical Industry Press, Beijing 1997)

Google Scholar

[34] Y.X. Li, Z.D. Cui, X.J. Yang and S.L Zhu. J. Funct. Mater. (In Chinese) Vol. 42 (2011), p.92

Google Scholar

[35] W. Bonfield, M. Wang, K. E. Tanner. Acta Mater. Vol. 46 (1998), p.2509

Google Scholar