Material Modeling and Correlative Mechanical Testing on AHSS Sheet Forming Simulation

Article Preview

Abstract:

The finite element method is widely used to numerically simulate sheet forming processes. The increasing use of advanced high strength steel (AHSS) sheet places an increased demand on accuracy of forming simulation and springback prediction. Appropriate identification and characterization of material behavior are of vital importance to improve the simulation accuracy. An overview of yield criteria and hardening laws of material constitutive models are presented in this work. Because of the anisotropic yield behavior and Bauschinger effect of AHSS sheet materials, suitable anisotropic yield model in combination with anisotropic hardening law is one essential component for successful AHSS sheet forming simulation and springback prediction. Necessary mechanical tests for determination of parameters of material constitutive models are given in this paper, the advantages and already known limitations of different test procedures are also discussed. Recommendations on choose or further improve the constitutive models are given for enhance the efficiency and accuracy of AHSS sheet forming simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-202

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Meinders, I.A. Burchitz, M.H.A. Bonte , R.A. Lingbeek. Int. J. Mach. Tool. Manu. Vol. 48 (2008), p.499

Google Scholar

[2] Dziallach, S, Bleck W, Blumbach M, Hallfeldt T. Adv. Mater. Res. Vol. 9 (2007), p.987

Google Scholar

[3] L.M. Smith, C. Wanintrudal, W. Yang, S. Jiang. J. Mat. Proc. Tech. Vol. 209(2009), p.3830

Google Scholar

[4] A.E. Tekkaya, K. Pöhlandt and K. Lange. CIRP Ann-Manuf. Techn. Vol. 31(1982), p.171

Google Scholar

[5] Bressan, J.D., Unfer, R.K. J. Mat. Proc. Tech. Vol. 179 (2006), p.23

Google Scholar

[6] Banabic, D., Aretz, H., Comsa, D.S., Paraianu, L. Int. J. Plasticity. Vol. 21 (2005), p.493

Google Scholar

[7] H. Vegter, A.H. van den Boogaard. Int. J. Plasticity. Vol. 22(2006), p.557

Google Scholar

[8] Kuwabara T, Ikeda S, Kuroda K. J. Mat. Proc. Tech. Vol. 80-81 (1998), p.517

Google Scholar

[9] Vegter H.,An Y. J. Mat. Proc. Tech. Vol. 209 (2009), p.4223

Google Scholar

[10] Amstrong, P.J., Frederick, C.O., 1966. G.E.G.B. Report RD/B/N 731

Google Scholar

[11] J.L. Chaboche. Int. J. Plasticity. Vol. 2 (1986), p.149

Google Scholar

[12] Geng, L., Wagoner, R.H. Int. J. Mech. Sci. Vol. 44 (2002), p.123

Google Scholar

[13] Mroz, Z. J. Mech. Phys. Solids. Vol. 15 (1967), p.163

Google Scholar

[14] K. M. Zhao,J. K. Lee. J. Eng. Mat. Tech. Vol. 123 (2001), p.391

Google Scholar

[15] Yoshida, F., Urabe, M., and Toropov, V. V. Int. J. Mech. Sci.1998, 40(2–3): 237–249

Google Scholar