First Principles Calculation on Adsorption of S on Fe(100)

Article Preview

Abstract:

Using the first principles method, which is based on the density function theory (DFT), the structures and electronic properties of S atoms are adsorbed on the Fe (100) surface, and their molecular orbital and binding energies were calculated with the generalized gradient approximation. The results show that the S atom is adsorbed hollow site is stable. With partial density of states, we have obtained the interaction of s and p states for S and Fe. It shows that the interaction between the S adsorption on the clean Fe (100) surface does lead to FeS comes into being.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

690-694

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. E. Jiang and Emily A. Carter, J. Phys. Chem. B, Vol.108, (2004), p.19140.

Google Scholar

[2] R. I. Hegde, J. M.White, J. Phys. Chem. Vol. 90, (1986), p.296.

Google Scholar

[3] D. R. Huntley, Surf. Sci. Vol.13, (1990), p.240.

Google Scholar

[4] R. I. R. Blyth, C.Searle, N.Tucker; R. G.White, T. K Johal, J.Thompson, S. D.Barrett, Phys. ReV. B, Vol.68,(2003), p.205404.

Google Scholar

[5] P. J. Cote, C. Rickard, Wear, Vol. 17 ( 2000), p.241.

Google Scholar

[6] J. R.Rice, J. S. Wang, Mater. Sci. Eng., A Vol. 23, (1989), p.107.

Google Scholar

[7] V.Srikrishnan, H. W. Liu, P. J. Ficalora, Scr. Metall. Vol. 9, (1975),p.1341.

Google Scholar

[8] C. L.Briant, K.Sieradzki, Phys. ReV. Lett. Vol. 63, (1989), p.2156.

Google Scholar

[9] P. B. V.Narayan, J. W. Anderegg, C. W. J. Chen, Electron Spectrosc. Relat. Phenom. Vol.27, (1982), p.233.

Google Scholar

[10] D. R.Baer, M. T.Thomas, R. H. Jones, Metall. Mater. Trans. A:Phys. Metall. Mater. Sci. Vol .15A , (1984), p.853.

Google Scholar

[11] M. R.Shanabarger, R. D. Moorhead, Surf. Sci. Vol.365, (1996), p.614.

Google Scholar

[12] H.Cabibil, J. A. Kelber, Surf. Sci. Vol.373, (1997), p.257.

Google Scholar

[13] P.Hohenberg, W. Kohn, Phys. ReV. B Vol.136, (1964),p.864.

Google Scholar

[14] W.Kohn, L. J. Sham, Phys. ReV. A, Vol.140, (1965), p.1133.

Google Scholar

[15] P. E.Blöchl, Phys. ReV. B,Vol.50, (1994), p.17953.

Google Scholar

[16] G.Kresse, D. Joubert, Phys. ReV. B Vol.59, (1999), p.1758.

Google Scholar

[17] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. Vol. 77, (1996), p.865.

Google Scholar

[18] H. J.Monkhorst, J. D.Pack, Phys. ReV. B Vol. 13 ,(1976), p.5188.

Google Scholar

[19] M.Methfessel, A. T. Paxton, Phys. ReV. B, Vol. 40, (1989), p.3616.

Google Scholar

[20] D. E.Jiang, E. A.Carter, Phys. ReV. B, Vol. 67,(2003),p.214103.

Google Scholar

[21] M.Acet, W. Pepperhoff, Phys.ReV. B Vol. 49, (1994), p.6012.

Google Scholar

[22] PACK J D, MONKHORST H J. Phys Rev B, Vol. 16, (1977), pp.1-748

Google Scholar

[23] G.Henkelman, B. P.Uberuaga, J. Chem. Phys. Vol. 113, (2000), p.9901.

Google Scholar

[24] K. O.Legg, F.Jona, D. W.Jepsen, Marcus, P. M. Surf. Sci. Vol. 66,(1977), p.25.

Google Scholar

[25] S. R. Chubb, W. E. Pickett. Phys. ReV. B , Vol. 38, (1988), p.12700.

Google Scholar