Design and Performance of the Transverse Rotating Magnetic Field Steered Arc Source Used in Vacuum Arc Deposition

Article Preview

Abstract:

In this design, the concept of static magnetic field was given up and the idea of controlling the arc discharge by transverse rotating magnetic field (TRMF) was put forward. Based on the principle of RMF generation, the specific scheme and the cohesiveness integral structure design of the TRMF steered arc source were constructed. In the specific design, a bipolar symmetric RMF (N-S) parallel to the cathode surface and homogenously covered the whole cathode was generated by stationary three-phase windings carrying three-phase alternating currents without any visible physical rotation. Through changing the frequency and the amplitude of the exciting current (these two parameters can be adjusted independently), the speed of rotation and the magnetic intensity could be regulated continuously. Experiments about TRMF steered arc source used in vacuum arc deposition (VAD) showed that: the arc voltage increased with not only an increase in the intensity of magnetic field connected with the supplied current but also an increase in the frequency of magnetic field. TRMF could reduce MPs content to a great extent and get a smooth film surface. A high utilization of the target was achieved due to the homogenous arc discharge covered the entire cathode surface. We believe this design is a new-type arc source and it will bring inspiration and great interest in the VAD domain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-76

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. W. Kimblin: J. Appl. Phys. 44(1973), p.3074.

Google Scholar

[2] E. Hantzsche: IEEE Trans. Plasma Sci. 31(2003), p.799.

Google Scholar

[3] R.L. Boxman, P.J. Martin and D. M. Sanders: Handbook of Vacuum Arc Science and Technology (1995).

Google Scholar

[4] A. Anders: Thin Solid Films 502(2006), p.22.

Google Scholar

[5] R. L. Boxman and S. Goldsmith: Surf. Coat. Tech. 52(1992), p.39.

Google Scholar

[6] S. Anders, A. Anders, K. M. Yu, X. Y. Yao and I. G. Brown: IEEE Trans. Plasma Sci. 21(1993), p.440.

Google Scholar

[7] B. Juttner and I. Kleberg: J. Phys. D. Appl. Phys. 33(2000), p.2025.

Google Scholar

[8] A. Anders: IEEE Trans. Plasma Sci. 33(2005), p.1456.

Google Scholar

[9] R. Tanberg: Nature 124(1929), p.371.

Google Scholar

[10] B. Juttner: J. Phys. D. Appl. Phys. 28(1995), p.516.

Google Scholar

[11] I. I. Beilis: IEEE Trans. Plasma Sci. 29(2001), p.657.

Google Scholar

[12] I. I. Beilis: Appl. Phys. Lett. 81(2002), p.3936.

Google Scholar

[13] C.G. Smith: Phys.Rev. 73(1948), p.543.

Google Scholar

[14] D.Y. Fang: IEEE Trans. Plasma Sci. Ps-11(1983), p.110.

Google Scholar

[15] P. J. Martin, A. Bendavid and H. Takikawa: J. Vac. Sci. Technol. A 17(1999), p.2351.

Google Scholar

[16] H. Takikawa, K. Kimura, R. Miyano and T. Sakakibara: Thin Solid Films 377(2000), p.74.

Google Scholar

[17] R. Miyano, T. Saito, H. Takikawa and T. Sakakibara: Thin Solid Films 407(2002), p.221.

Google Scholar

[18] H. Randhawa: Thin Solid Films 167(1988), p.175.

Google Scholar

[19] H. D. Steffens, M. Mack, K. Moehwald and K. Reichel: Surf. Coat. Tech. 46(1991), p.65.

Google Scholar

[20] B. F. Coll and D. M. Sanders: Surf. Coat. Tech. 81(1996), p.42.

Google Scholar

[21] D. A. Karpov: Surf. Coat. Tech. 96(1997), p.22.

Google Scholar

[22] V. N. Zhitomirsky, O. Zarchin, R. L. Boxman and S. Goldsmith:IEEE Trans. Plasma Sci. 31(2003), p.977.

DOI: 10.1109/tps.2003.818446

Google Scholar

[23] O. Zarchin, V. N. Zhitomirsky, S. Goldsmith and R. L. Boxman: J. Phys. D. Appl. Phys. 36(2003), p.2262.

Google Scholar

[24] K. Miernik, J. Walkowicz and J. Bujak: Plasmas & Ions 3(2000), p.41.

Google Scholar

[25] P. D. Swift: J. Phys. D. Appl. Phys. 29(1996), p.2025.

Google Scholar

[26] P. J. Walke, R. New and C. M. Care: Surf. Coat. Tech. 59(1993), p.126.

Google Scholar

[27] M. Ives, J. S. Brooks, J. Cawley and W. Burgmer: Surf. Coat. Tech. 49(1991), p.244.

Google Scholar

[28] S.Ramalingam, C.B.Qi and K.Kim U.S. Patent:4673477(1987).

Google Scholar

[29] R. L. Boxman and V. N. Zhitomirsky: Rev. Sci.Instrum 77(2006).

Google Scholar

[30] R. L. Boxman, I. I. Beilis, E. Gidalevich and V. N. Zhitomirsky: Pro.ISDEIV. XXIst Int. Sym. Dischar. Electr.Insul.Vacuum, Vols 1 and 2, Proceedings 21(2004), p.473.

DOI: 10.1109/deiv.2004.1422650

Google Scholar

[31] P. Siemroth, O. Zimmer, T. Schulke and J. Vetter: Surf. Coat. Tech. 94-5(1997), p.592.

Google Scholar

[32] V. N. Zhitomirsky, R. L. Boxman and S. Goldsmith: Surf. Coat. Tech. 185(2004), p.1.

Google Scholar

[33] D. Arbilly, R. L. Boxman, S. Goldsmith, A. Rothwarf and L. Kaplan: Thin Solid Films 253(1994), p.62.

DOI: 10.1016/0040-6090(94)90295-x

Google Scholar

[34] V. N. Zhitomirsky, R. L. Boxman and S. Goldsmith: J. Vac. Sci. Technol. A 13(1995), p.2233.

Google Scholar

[35] L. Kaplan, V. N. Zhitomirsky, S. Goldsmith, R. L. Boxman and I. Rusman: Surf. Coat. Tech. 76(1995), p.181.

Google Scholar

[36] H. A. Blevin, P. C. Thonemann and N. Fusion: Fusion Suppl.Part 1,55(1962).

Google Scholar

[37] I. R. Jones: Phys. Plasmas.6(1999), p.1950.

Google Scholar

[38] R. D. Milroy,Phys. Plasmas7(2000), p.4135.

Google Scholar

[39] W. N. Hugrass, I. R. Jones, K. F. McKenna, M. G. R.Phillips, R. G. Storer and H. Tuczek: Phys. Rev. Lett.44(1980), p.1676.

DOI: 10.1103/physrevlett.44.1676

Google Scholar

[40] J. Friedrich, Y.-S. Lee, B. Fischer, D. Vizman and C. Kupfer: Phys. Fluids. 11(1999), p.853.

Google Scholar

[41] P. Dold and K. W. Benz: Prog.Cryst. Growth. Ch. 38(1999), p.39.

Google Scholar

[42] R. U. Barz, G. Gerbeth and Yu.M. Gelfga: J. Crystal. Growth.180(1997), p.410.

Google Scholar

[43] B. Wu, G. R. Slemon and S. B. Dewan: IEEE.Trans.Industry.Appl. 27(1991), p.970.

Google Scholar

[44] W.C. Lang, J.Q. Xiao: submitted to Surf. Coat. Technol. (2011).

Google Scholar