Comparative Study on Filter Methods of Medical Ultrasound Images

Article Preview

Abstract:

This paper presents a comparative study on six despeckling methods such as modified hybrid median filter, gabor filter, speckle reducing anisotropic diffusion, homomorphic filter, non-local mean filter and squeeze box filter. We select eight objective evaluation parameters, such as signal-to-ratio, contrast signal–to–noise ratio, figure of merit, least absolute error, peak signal-to-noise ratio, edge protection factor, quantitative parameters of despeckling, signal-to-minimum mean square error ratio, to quantify the performance of these filters. The comparative study will provide a good guidance for selecting a suitable filter in the ultrasound image processing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 341-342)

Pages:

467-471

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Jain, F. Farrokhnia: Unsupervised Texture Segmentation Using Gabor Filters. Vol. 24(1991),P. 1167-1186.

DOI: 10.1016/0031-3203(91)90143-s

Google Scholar

[2] R. Vanithamani, G. Umamheswari, M. Ezhilarasi: Modified Hybrid Median Filter for Effective Speckle Reduction in Ultrasound Images. ICNVS 1790-5117(2010),P. 4-6.

Google Scholar

[3] Solbo S., T. Eltoft, Homomorphic wavelet based statistical despeckling of SAR images., IEEE Transactions on Geoscience and Remote Sensing 42 (4), (2004), P. 711–721.

DOI: 10.1109/tgrs.2003.821885

Google Scholar

[4] Y. j. Yu, S.T. Acton: Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing Vol. 11(2002), P. 1260–1270.

DOI: 10.1109/tip.2002.804276

Google Scholar

[5] C. Pierrick: Non Local Means-based Speckle Filtering for Ultrasound Images. IEEE Transactions on Image Processing, Vol. 18(2009), P. 2221-2229.

DOI: 10.1109/tip.2009.2024064

Google Scholar

[6] C. T. Peter: Ultrasound Despeckling for Contrast Enhancement. IEEE Trans Image Process, Vol. 19(2010), P. 1847–1860.

Google Scholar

[7] D. Sakrison : On the role of observer and adistortion measure in image transmission. IEEE Transaction onCommunication, Vol. 25(1977), P. 1251-1267.

DOI: 10.1109/tcom.1977.1093773

Google Scholar

[8] S. Koike: Recursive least absolute error algorithm: analysis and simulations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (2002), P. 2886-2893.

Google Scholar

[9] C. Yan, S.L. Broschat, P. J. Fiynn : Phase insensitive homomorphic image processing for speckle reduction. Ultrason. Imag. Vol. 18(1996), P. 122-139.

DOI: 10.1177/016173469601800203

Google Scholar

[10] O. V. Michailovich, A. Tannenbaum: Despeckling of Medical Uitrasoud Image. IEEE Trans. UFFC, Vol. 53(2006),P. 64-78.

Google Scholar

[11] F. Sattar, L. Floreby , G. Salomonsson etc: Image enhancement based on a nonlinear multiscale method. IEEE Transcation on Image Processing. Vol. 6(1997),P. 888-895.

DOI: 10.1109/83.585239

Google Scholar

[12] A. Alin, B. Anastasios, T. Panagiotis: Wavelet-based ultrasound image denoising using an alpha-stable prior probability model. Proc . V111-th IEEE Int'l Conf. on Image Proc., Vol. 8(2001),P. 221-224.

DOI: 10.1109/icip.2001.958464

Google Scholar