Effect of Internal Electrical Field on the Electrical Breakdown Properties of Contact Materials

Article Preview

Abstract:

In order to get a deep understanding of the effect of internal electrical field on the electrical breakdown properties of contact materials, two kinds of W-Cu and Cr-Cu joints were prepared in a vacuum sintering furnace. The vacuum breakdown tests were respectively performed at the interface of two joints and pure metal ends in an arc extinguishing chamber, and the surface morphologies after electrical breakdown 50 times were characterized by a scanning electron microscopy equipped with an energy dispersive spectroscopy. The results show that the breakdown strength at the interface is much larger than that of pure metal ends, and the breakdown site deviates from the interface. It is suggested that the existence of internal electrical field at the interface of two contact metals changes the electronic structure, and, thus, the electrical breakdown behavior is influenced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-160

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Shioiri, T. Kamikawaji, E. Kaneko, M. Homma, H. Takahashi, and I. Ohshima, Influence of electrode area on conditioning in vacuum gap breakdown, IEEE Trans. Dielectr. Elect. Insul., vol. 2, no. 2, p.317–320, Apr. (1995).

DOI: 10.1109/94.388258

Google Scholar

[2] T. Shioiri, I. Ohshima, M. Honda, H. Okumura, H. Takahashi, and H. Yoshida, Impulse voltage field emission characteristics and breakdown dependency upon field strength in vacuum gaps, IEEE Trans. Power App. Syst., vol. 101, no. 10, p.4178–4184, Oct. (1982).

DOI: 10.1109/tpas.1982.317097

Google Scholar

[3] T. Fugel and D. Koenig, Influence of grading capacitors on the breaking performance of a 24-kV vacuum breaker series design, IEEE Trans. Dielectr. Elect. Insul., vol. 10, no. 4, p.569–575, Aug. (2003).

DOI: 10.1109/tdei.2003.1219639

Google Scholar

[4] T. Shioiri, Y. Niwa, T. Kamikawaji, and M. Homma, Investigation of breakdown breakdown probability distribution for double-break vacuum circuit breaker, in Proc. 20th Int. Symp. Discharges Elect. Insul. Vacuum, p.323–326, (2002).

DOI: 10.1109/isdeiv.2002.1027374

Google Scholar

[5] N. Ide, O. Tanaka, S. Yanabu, S. Kaneko, S. Okabe, and Y. Matsui, Interruption characteristics of double-break vacuum circuit breakers, IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 4, p.1065–1072, Aug. (2008).

DOI: 10.1109/tdei.2008.4591229

Google Scholar

[6] E. Dullni and E. Schade, Investigation of high-current interruption of vacuum circuit breakers, IEEE Trans. Elect. Insul., vol. 28, no. 4, p.607–620, Aug. (1993).

DOI: 10.1109/14.231543

Google Scholar

[7] X. H. Yang, S. H. Liang, X. H. Wang, P. Xiao and Z. K. Fan, Effect of WC and CeO2 on microstructure and properties of W–Cu electrical contact material, Int. J. Refract. Met. Hard Mater., vol. 28, p.305–311, (2010).

DOI: 10.1016/j.ijrmhm.2009.11.009

Google Scholar

[8] Y. P. Wang, L. N. Zhang, B. J. Ding, and J. E. Zhou , Effect of selective strengthening of CuCr contact materials on the breakdown strength in a short vacuum gap, Proceedings of the CSEE, vol. 19, no. 3, pp.46-49, Mar. (1999).

Google Scholar

[9] C. Y. Zhang, Y. P. Wang, Z. M. Yang, Y. Guo and B. J. Ding, Microstructure and properties of vacuum induction melted CuCr25 alloys, J. Alloys Compd., vol. 366, p.289–292, (2004).

DOI: 10.1016/j.jallcom.2003.07.001

Google Scholar

[10] Y. P. Wang and B. J. Ding, The Preparation and the Properties of Microcrystalline and Nanocrystalline CuCr Contact Materials, IEEE Trans. on components and packaging technology, vol. 22, no. 2, pp.467-472, Jun. (1999).

DOI: 10.1109/6144.796552

Google Scholar

[11] F. Zhao , H. Xu, Z. M. Yang and B. J. Ding, Preparation of CuCr25 alloys through vacuum arcs melting and their properties, .Trans.Nonferrous Met. .Soc. .China, vol. 10, no. 1, pp.73-75, (2000).

Google Scholar

[12] X. H. Yang, S. M. Li, Z. K. Fan, S. H. Liang and P. Xiao, Properties of CuFeW Electrical Contact Materials, High Voltage Apparatus, vol. 44, no. 6, pp.537-540, Dec. (2008).

Google Scholar

[13] Q. Huang, Solid Physics, Beijing, High Education Press, 1988, pp.288-290 (in Chinese).

Google Scholar

[14] H. Gleiter, J. Weissmqller, O. Wollersheim, and R. Wqrschum, Nanocrystalline Materials: A Way To Solids With Tunable Electronic Structures And Properties?, Acta Mater., vol. 49, pp.737-745, (2001).

DOI: 10.1016/s1359-6454(00)00221-4

Google Scholar

[15] J. Wang, C. Y. Zhang, H. Zhang, Z. M. Yang and B. J. Ding, CuCr25W1Ni2 contact material of vacuum interrupter, Trans Nonferrous Met Soc China, vol. 11, no2, pp.226-230, (2001).

Google Scholar

[16] F. Z. Wang, F. Zhuge, H. Zhang and B. J. Ding, Effect of high content no-thoria addition on the properties of tungsten electrode, Mater. Res. Bull., vol. 38, pp.629-636, (2003).

DOI: 10.1016/s0025-5408(03)00005-9

Google Scholar