[1]
W.C. Tang, K. M. Ng, Y. Lo and C.M. Tam, Fracture properties of concrete with waste compact disc shred, Materials Research Innovations, 2008, vol. 12(4): 179-183.
DOI: 10.1179/143307508x362819
Google Scholar
[2]
Li, G. Stubblefield, M. A. Garrick, G. Eggers, J. Abadie, C. and Huang, B. Development of waste tire modified concrete, Cement and Concrete Research, 2004a, vol. 34 (12): 2283-2289.
DOI: 10.1016/j.cemconres.2004.04.013
Google Scholar
[3]
Hernández-Olivares, F. Barluenga, G. Bollati M. and Witoszek B. (2002) Static and dynamic behaviour of recycled tyre rubber-filled concrete, Cement and Concrete Research, vol. 32(10): 1587-96.
DOI: 10.1016/s0008-8846(02)00833-5
Google Scholar
[4]
K. Ogi, T. Shinoda and M. Mizui, Strength in concrete reinforced with recycled CFRP pieces, Composites Part A: Applied Science and Manufacturing, 2005, vol. 36 (7): 893-902.
DOI: 10.1016/j.compositesa.2004.12.009
Google Scholar
[5]
T. Ochia, S. Okubob and K. Fukuib, Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cement and Concrete Composites, 2007, vol. 29 (6): 448-455.
DOI: 10.1016/j.cemconcomp.2007.02.002
Google Scholar
[6]
RILEM Draft Recommendation, Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Materials and Structure, 1985, vol. 18: 285-290.
DOI: 10.1007/bf02498757
Google Scholar
[7]
G.A. Rao and B.K.R. Prasad, Fracture energy and softening behavior of high-strength concrete, Cement and Concrete Research, 2002, 32(2): 247-252.
DOI: 10.1016/s0008-8846(01)00667-6
Google Scholar
[8]
R.K. Navalurkar, C.T.T. Hsu, S.K. Kim, and M. Wacharatna, True fracture energy of concrete, ACI Mater. J. 1999, vol. 96(2): 213–225.
Google Scholar
[9]
A. Hillerborg, Analysis of one single crack, in Fracture Mechanics of Concrete, edited by F.H. Wittmann, Elsevier, Amsterdam (1983), p.223–249.
Google Scholar
[10]
F.P. Zhou, B.I.G. Barr, and F.D. Lydon, Fracture properties of high strength concrete with varying silica fume content and aggregates, Cement and Concrete Research, 1995, vol. 25(3): 543-552.
DOI: 10.1016/0008-8846(95)00043-c
Google Scholar
[11]
Friends of the Earth (FoE) (2007). CD Recycling Programme, Hong Kong.
Google Scholar
[12]
BS 1881, Testing Concrete. Part 116: Testing concrete, British Standard Institution, (1983).
Google Scholar
[13]
BS 1881, Testing Concrete. Part 117: Testing concrete, British Standard Institution, (1983).
Google Scholar
[14]
BS 1881, Testing Concrete. Part 121: Testing concrete, British Standard Institution, (1983).
Google Scholar
[15]
D.P. Dias, and C. Thaumaturgo, Fracture toughness of geopolymeric concretes reinforced with basalt fibers, Cement and Concrete Composites, 2005, vol. 27(1): 49-54.
DOI: 10.1016/j.cemconcomp.2004.02.044
Google Scholar
[16]
F. Altun, T. Haktanir and K. Ari, Effects of steel fiber addition on mechanical properties of concrete and RC beams, Construction and Building Materials, 2005, vol. 21(3): 654-661.
DOI: 10.1016/j.conbuildmat.2005.12.006
Google Scholar
[17]
C. Qian, and P. Stroeven, Fracture properties of concrete reinforced with steel – polypropylene hybrid fibres, Cement and Concrete Composites, 2000, vol. 22(5): 343-351.
DOI: 10.1016/s0958-9465(00)00033-0
Google Scholar
[18]
B.H. Oh, J.C. Kim and Y.C. Choi, Fracture behavior of concrete members reinforced with structural synthetic fibers, Engineering Fracture Mechanics, 2006, vol. 74 (1-2): 243-257.
DOI: 10.1016/j.engfracmech.2006.01.032
Google Scholar
[19]
C. Tasdemir, M.A. Tasdemir, F.D. Lydon, and B.I.G. Barr, Effects silica fume and aggregate size on the brittleness of concrete, Cement and Concrete Research, 1996, vol. 26 (1): 63–68.
DOI: 10.1016/0008-8846(95)00180-8
Google Scholar