Derivation of Geometrieal Nonlinear Stiffness Matrix for Space Beam Element

Article Preview

Abstract:

A space beam element is derived for geometrically nonlinear analysis based on the principle of minimum potential energy principle. The impact of high-order nonlinear is considered by introducing the axial deformation into the stiffness matrix. The large displacement matrix is divided into four and the initial stress matrix into three submatrix

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 368-373)

Pages:

3106-3112

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ZHU Wen, ZHOU Shuixin. Derivation of Explicit Tangent Stiffness Matrix for Space Beam Element [J]. Technology of Highway and Transport, 2008(5)

Google Scholar

[2] Gu Jianxin, Chan Siulai. New tangent stiffness matrix for geometrically nonlinear analysis of space frames [J]. Journal of Southeast University (English Edition), 2005(04) 480 - 485

Google Scholar

[3] LIU Guangdong, WANG Jiejun, HE Fanglong. Resolved Formulation of Geometrical Nonlinear Stiffness Matrix for Three-Dimensional Beam Element [J]. Journal of Hunan University (Natural Science), 1992(01)

Google Scholar

[4] CHEN Tao, HUANG ZongMing. Material and geometrically nonlinear spatial beam-column element based on the finite element flexibility method [J]. Chinese Journal of Computational Mechanics, 2006, (05).

Google Scholar

[5] Gattass M, Abel J F. Equilibrium considerations of the updated Lagrangian formulation of beam-columnswith natural Concepts [J]. International Journal for Num ericalM ethodsin engineering, 1987, 24: 2143-2166.

DOI: 10.1002/nme.1620241108

Google Scholar

[6] Meek J L, Tan H S. Geometrically nonlinear analysis ofspace frames by an incremental iterative technique [J].Computer Methods in Applied Mechanics and Engineering, 1984, 47: 261 282.

DOI: 10.1016/0045-7825(84)90079-3

Google Scholar

[7] WAN jinguo.Study on Non-linear Analysis Method of Steel Structure and Its Implementation in Software [D] .Wuhan University, 2010, 48-55.

Google Scholar