[1]
R E Goodman, R.E. Taylor and T. Brekke. A modle for the mechanics of jointed rock. Soil. Mech. Foun., ASCE, Vol. 94(1968), pp.637-659.
DOI: 10.1061/jsfeaq.0001133
Google Scholar
[2]
Fishman K L. Verification for numerical modelling of joint rock mass using thin layer element[J]. Int J for Numerical and Analytical Methods in Geomechanics, Vol. 15(1991), pp.61-703.
DOI: 10.1002/nag.1610150106
Google Scholar
[3]
O. C. Zienkiewicz and G. N. Pande. Time dependent multilaminate model of rocks-a numerical study of deformation and failure of rockmasses. Int. J. Numer. Anal. Meth. Geomech., Vol. 1(1977), pp.219-247.
DOI: 10.1002/nag.1610010302
Google Scholar
[4]
C. S. Desai,M. M. Zaman, J. G. Lightner andH. J. Siriwardane. Thin-layer element for interfaces and joints. Int. J. Numer. Anal. Meth. Geomech., Vol. 8(1984), pp.19-43.
DOI: 10.1002/nag.1610080103
Google Scholar
[5]
M. M. Zaman C.S. Desai,E. C. Drumm, etal. Interface model for dynamic soil-structure interaction. J ofGeotech Engrg, Vol. 110, No. 9(1984), pp.1257-1273. Fig. 2. Specific location of joints Fig. 3 Strain energy comparison.
DOI: 10.1061/(asce)0733-9410(1984)110:9(1257)
Google Scholar
[6]
J.S. Lee and G. N. Pande. A new joint element for the analysis of media having discrete discontinuities. Mech. Cohes. Frict. Mater., Vol. 4(1999), pp.487-504.
DOI: 10.1002/(sici)1099-1484(199909)4:5<487::aid-cfm76>3.0.co;2-z
Google Scholar
[7]
KlarbringA. A mathematieal programming approach to three-dimensional contact problems with frietion. Comput Meth Appl Mech Eng, Vol. 58(1986), pp.175-200.
Google Scholar
[8]
Zhong W X,Sun S M. A parametric quadratic programming approach to elastic contact problems with frietion[J]. Comput&Struct, Vol. 32, No. 1(1989), pp.37-43.
DOI: 10.1016/0045-7949(89)90066-7
Google Scholar
[9]
Clough G W, Duncan J M. Finite element analysis of retaining wall behavior. Soil Mech. & Found Div., ASCE, Vol. 97, No. 12, (1971), pp.1657-1673.
DOI: 10.1061/jsfeaq.0001713
Google Scholar
[10]
Bloulon, Nova R. Modeling of soil structure interface behavior: A comparison between elastoplastic and rate-type laws. Computers and Geotechnis, Vol. 9(1990), pp.21-46.
DOI: 10.1016/0266-352x(90)90027-s
Google Scholar
[11]
Yin Zong-ze, Zhu Hong, Xu Guo-hua. Numerical Simulation of the Deformation in the Interface between Soil and Structural Material, Chinese jounal of geotechnical engineering., Vol. 16, No. 3(1994), pp.14-22.
Google Scholar
[12]
Zhang Dongji, Lu Tinghao. Establishment and application of a interface model between soil and structure, Chinese Jounal of Geotechnical Engineering, Vol. 20, No. 6 (1998) , pp.62-66.
Google Scholar
[13]
Singh B. Continuum characterization of jointed rock masses part ii-significance of low shear modulus, Int J Rock Mech Sci & Geomech Abstr, Vol. 10, No. 4 (1973) , pp.337-349.
Google Scholar
[14]
Zienkiewicz O C, Kelly D W. The coupling of the finite element method and boundary solution procedures, Int J Numer Methods Eng, Vol. 11, No. 2(1977) , pp.355-375.
DOI: 10.1002/nme.1620110210
Google Scholar
[15]
Gerrard C M. Elastic models of rock masses having one, two and three sets of joints, Int J Rock Mech Min Sci & Geomech Abstr, Vol. 19, No. 1(1982) , pp.15-23.
DOI: 10.1016/0148-9062(82)90706-9
Google Scholar
[16]
Sitharama T G, Sridevib J, Shimizuc N. Practical equivalent continuum characterization of jointed rock masses, Int J Rock Mech Min Sci, Vol., 38, No. 3 (2001), pp.437-448.
DOI: 10.1016/s1365-1609(01)00010-7
Google Scholar
[17]
Maghous S, DE Buhan P, Dormieux L. Non-linear global elastic behaviour of a periodically jointed material, Mechanics Research Communications, Vol. 29, No. 1(2002) , pp.45-51.
DOI: 10.1016/s0093-6413(02)00225-2
Google Scholar
[18]
Yan Shilin, Huang Yuying, Chen Chuanyao. An Equivalent Model for Jointed Rock Mass with Planar Non penetrative Joint and Its Elastic Parameters, J. Huazhong Univ. of Sci. & Tech., Vol. 29, No. 6(2001) , pp.64-67.
Google Scholar
[19]
Yan Shilin, Huang Yuying, Chen Chuanyao. An Equivalent Model for Jointed Rock Mass with Persistent Joint and Its Elastic Parameters,J. Huazhong Univ. of Sci. & Tech., Vol. 29, No. 6(2001) , pp.60-63.
Google Scholar
[20]
Zhu Daojian, Yang Linde, Cai Yongchang. Mixed multi-weakness plane softening model for jointed rock mass, Chinese Journal of Geotechnical Engineering, Vol. 32, No. 2(2010) , pp.185-191.
Google Scholar