Feasibility of Hydrogen Production by a Continuous Two-Stage (Dark/Dark) Fermentation System

Article Preview

Abstract:

Anaerobic hydrogen production in a continuous two-stage fermentation system was studied. Two continuously stirred tank reactors (CSTR) were employed to evaluate performances of the system. The first stage was fed with molasses wastewater, and the effluent discharged from the first stage was subsequently fed into the second stage. The hydrogen production rate (HPR) in the second stage achieved a remarkable increase from 1.76 L/d to 6.45 L/d during the operation by re-utilizing the residual substrates from the first reactor effluent. The two stages showed a similar metabolic pathway for biohydrogen fermentation. The hydrogen production yield (HY) and acidification efficiency increased markedly by more than 70% and 50% respectively, which indicated the hydrogen recovery and anaerobic acidification of organic substrates can be improved by the combined continuous two-stage hydrogen production process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 374-377)

Pages:

1000-1004

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. L. Hawkes: Int. J. Hydrogen Energy. Vol. 32 (2007), p.172

DOI: 10.1016/j.ijhydene.2006.08.014

Google Scholar

[2] H. Zhu, W. Parker, R. Basnar, A. Proraki, P. Falleta, M. Beland, and P. Seto: Int. J. Hydrogen Energy. Vol. 33 (2008), p.3651

Google Scholar

[3] J. Z. Li, B. K. Li, G. F. Zhu, N. Q. Ren, L. X. Bo, and J. G. He: Int. J. Hydrogen Energy. Vol. 32 (2007), p.3274

Google Scholar

[4] N. Q. Ren, H. Chua, S. Y. Chan, Y. F. Tsang, Y. J. Wang, and N. Sin: Bioresour. Technol. Vol. 98 (2007), p.1774

Google Scholar

[5] J. J. Lay and T. Noike: Water Res. Vol. 33 (1999), p.2579

Google Scholar

[6] M. H. Hwang, N. J. Jang, S. H. Hyun, and I. S. Kim: J. Biotechnol. Vol. 111 (2004), p.297

Google Scholar

[7] J. H. Hwang, J. A. Choi, R. A. I. Abou-Shanab, B. Min, H. Song, Y. Kim, E. S. Lee, and B. H. Jeon: Bioresour. Technol. Vol. 102 (2011), p.1051

Google Scholar

[8] D. Y. Lee, Y. Ebie, K. Q. Xu, Y. Y. Li, and Y. Inamori: Bioresour. Technol. Vol. 101 (2010), p.542

Google Scholar

[9] B. F. Liu, N. Q. Ren, G. J. Xie, J. Ding, W. Q. Guo, and D. F. Xing: Bioresour. Technol. Vol. 101 (2010), p.5325

Google Scholar

[10] J. T. Kraemer and D. M. Bagley: Environ. Sci. Technol. Vol. 39 (2005), p.3819

Google Scholar

[11] American Public Health Association (APHP). Standards methods for the examination of water and wastewater. 20th ed. Washington DC, America (1998)

Google Scholar

[12] B. Q. Wang and Z. Fang: J. Xi'an Univ. of Arch. & Tech. Vol. 29 (1997), p.142

Google Scholar

[13] S. E. Oh, S. W. Van Ginkel, and B. E. Logan: Environ. Sci. Technol. Vol. 37 (2003), p.5186

Google Scholar

[14] J. H. Hwang, J. A. Choi, R. A. I. Abou-Shanab, A. Bhatnagar, B. Min, H. Song, E. Kumar, J. Choi, E. S. Lee, Y. J. Kim, S. Um, D. S. Lee, and B. H. Jeon: Int. J. Hydrogen Energy. Vol. 34 (2009), p.9702

DOI: 10.1016/j.ijhydene.2009.10.022

Google Scholar

[15] H. H. P. Fang, H. Liu, and T. Zhang: Biotechnol. Bioeng. Vol. 78 (2001), p.44

Google Scholar

[16] N. Q. Ren, B. Z. Wang, and F. Ma, in: Proceedings of the 68th water environment federation annual conference exposure (1995), p.145

Google Scholar