Copper Nitride Films Prepared by Reactive Radio-Frequency Magnetron Sputtering

Article Preview

Abstract:

The semiconducting Cu3N films were successfully deposited on glass substrates by reactive radio-frequency magnetron sputtering in a mixture gas of nitrogen and argon. The influence of nitrogen content in a fixed total sputtering gas flow on the preferential crystalline orientation, the mean crystalline grains size, the electrical resistivity, the microhardness, and the reduced modulus were investigated. X-ray diffraction analysis shows that the films were polycrystalline Cu3N and the preferential orientation is greatly affected by the N2 content. The mean crystalline grain size of these as-deposited Cu3N films decrease and the electrical resistivity increase from 1.51×102Ω•cm to 1.129×103Ω•cm with increasing N2 content. And the microhardness and reduced modulus are 6.0GPa and 108.3GPa, respectively. The sectional SEM and planform AFM observations reveal that the films have smooth surfaces with columnar grains.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 374-377)

Pages:

1515-1518

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Asano, K. Umeda, and A. Tasaki, Jpn. J. Appl. Phys. 29 (1990) 1985.

Google Scholar

[2] K. J. Kim, J. H. Kim, and J. H. Kang, J. Cryst. Growth 222 (2001) 767.

Google Scholar

[3] S. Terada, H. Tanaka, and K. Kubota, J. Cryst. Growth 94 (1989) 567.

Google Scholar

[4] T. Maruyama and T. Morishita, J. Appl. Phys. 78 (1995) 4104.

Google Scholar

[5] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa and Y. Nakayama, Thin Solid Films 348 (1999) 8.

Google Scholar

[6] D. Y. Wang, N. Nakamine, and Y. Hayashi, J. Vac. Sci. Technol. A 16 (1998) 2084.

Google Scholar

[7] T. Maruyama and T. Morishita, Appl. Phys. Lett. 69 (1996) 890.

Google Scholar

[8] Z. Q. Liu, W. J. Wang, T. M. Wang, and S. K. Zheng, Thin Solid Films 325 (1998) 55.

Google Scholar

[9] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa and Y. Nakayama, Appl. Surf. Sci. 169 (2001) 358.

Google Scholar

[10] L. Maya, Mater. Res. Soc. Symp. Proc. 282 (1993) 203.

Google Scholar

[11] G. H. Yue, P. X. Yan, Journal of Synthetic Crystals 34 (2005) 149.

Google Scholar

[12] L. Maya, J. Vac. Sci. Technol. A 11, (1993) 604.

Google Scholar

[13] U. Hahn and W. Weber, Phys. Rev. B 53 (1996) 12684.

Google Scholar

[14] F. Fendrych, L. Soukup, L. Jastrabik, M. Sicha, Z. Hubicka, D. Chvostova, A. Tarasenko, V. Studnicka, and T. Wagner, Diamond Relat. Mater. 8 (1999) 1715.

Google Scholar

[15] S. Ghosh, F. Singh, D. Choudhary, D. K. Avasthi, V. Ganesan, P. Shah, and A. Gupta, Suface and Coatings Technology 142-144 (2001) 1034.

DOI: 10.1016/s0257-8972(01)01091-x

Google Scholar

[16] D. M. Borsa, S. Grachev, C. Presura, and D. O. Boerma, Appl. Phys. Lett. 80 (2002) 1823.

Google Scholar

[17] J. A. Thornton, J. Vac. Sci. Technol. A4 (1986) 3059.

Google Scholar

[18] P. Klug. L. E. Alexander (Eds.), X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Second edition, Wiley, New York, 1974, pp.687-780.

Google Scholar

[19] J. Tauc, R. Grigorovici, A. Vancu, Phys. State. Sol. 15 (1966) 627.

Google Scholar