Robust State-Feedback Controller Design for Uncertainty Singular Systems

Article Preview

Abstract:

In this paper the problem of robust stability and stabilization of a class of uncertain singular Systems with uncertainties in both the derivative and state matrices is studied. By using a parameter dependent Lyapunov function, we derive the linear matrix inequalities (LMIs) based sufficient conditions for the stability and stabilization of the system. By solving these LMIs, the robust controller is derived. Finally, the numerical example is given to show the effectiveness of the proposed theorems.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

32-37

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Dai, Singular Control Systems, Berlin, Germany: Springer-Verlag, (1989).

Google Scholar

[2] F. L. Lewis, A survey of linear singular systems, Circuits, Syst. Signal Processing, vol. 5, pp.3-36, (1986).

Google Scholar

[3] S. Xu, P. Dooren, R. Stefan, and J. Lam, Robust Stability and Stabilization for Singular Systems With State Delay and Parameter Uncertainty, IEEE Transactions on Automatic Control, Vol. 47, No. 7, pp.1122-1128, (2002).

DOI: 10.1109/tac.2002.800651

Google Scholar

[4] C. H. Fang, L. Lee, and F. R. Chang, Robust control analysis and design for discrete-time singular systems, Automatica, vol. 30, pp.1741-1750, (1994).

DOI: 10.1016/0005-1098(94)90076-0

Google Scholar

[5] D. Zhang, and Q. Zhang, On the quadratic stability of descriptor systems with uncertainties in the derivative matrix, International Journal of Systems Science, Vol. 40, No. 7, pp.695-702, (2009).

DOI: 10.1080/00207720902953128

Google Scholar

[6] J. Ren and Q. Zhang, Robust H∞ control for uncertain descriptor systems by proportional-derivative state feedback, International Journal of Control, Vol. 83, No. 1, pp.89-96, (2010).

DOI: 10.1080/00207170903100222

Google Scholar

[7] C. Yang, Q. Zhang, F. Zhang, and Z. Zhou, Robustness Analysis of Descriptor Systems with Parameter Uncertainties, International Journal of Control, Automation, and Systems, Vol. 8, No. 2, pp.204-209, (2010).

DOI: 10.1007/s12555-010-0204-x

Google Scholar

[8] C. Lin, J. Wang, G. Yang and J. Lam, Robust stabilization via state feedback for descriptor systems with uncertainties in the derivative matrix, Int. J. control, Vol. 73, No. 5, pp.407-415, (2000).

DOI: 10.1080/002071700219588

Google Scholar

[9] C. Lina, J. Lama, J. Wang, G. Yang, Analysis on robust stability for interval descriptor systems, Systems & Control Letters Vol. 42, pp.267-278, (2001).

DOI: 10.1016/s0167-6911(00)00096-7

Google Scholar

[10] J. Bai and H. Su, Robust D Stabilization of Singular Systems with Polytopic Uncertainties, 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, pp.3706-3709, (2009).

DOI: 10.1109/acc.2009.5159950

Google Scholar

[11] C. Yang, Q. Zhang, F. Zhang, and Z. Zhou, Robustness Analysis of Descriptor Systems with Parameter Uncertainties, International Journal of Control, Automation, and Systems, Vol. 8, No. 2, pp.204-209, (2010).

DOI: 10.1007/s12555-010-0204-x

Google Scholar

[12] S. Y. Xu and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Transactions on Automatic Control, vol. 47, pp: 1122-1128, (2002).

DOI: 10.1109/tac.2002.800651

Google Scholar

[13] J. Y. Ishihara, and M. H. Terra, On the Lyapunov Theorem for Singular systems, IEEE Transactions of Automatic Control, Vol. 47, No. 11, pp.1926-1930, (2002).

DOI: 10.1109/tac.2002.804463

Google Scholar

[14] G. R. Duan, G. W. Irwin and G. P. Liu, Robust Stabilization of Descriptor Linear Systems via Proportional-plus-derivative State Feedback, Proceedings of the American Control Conference San Diego, California, vol. 2, pp.1304-1308, (1999).

DOI: 10.1109/acc.1999.783578

Google Scholar