[1]
E. A. Bossanyi, Short-term Wind Prediction Using Kalman Filters, Wind Engineering, Vol. 9, Jan. 1985, pp.1-8.
Google Scholar
[2]
J. L. Torres, A. Garcia, M. D. Blas, Forecast of Hourly Average Wind Speed with ARMA Models in Navarre(Spain),. Solar Energy, Vol. 79, 2005, pp.65-77.
DOI: 10.1016/j.solener.2004.09.013
Google Scholar
[3]
G. Y. Wu, Y. Xiao, S. S. Weng, Discussion About Short-term Forecast of Wind Speed on Wind Farm, Jilin Electric Power, Jun. 2005, pp.21-24.
Google Scholar
[4]
T. G. Barbounis, J. B. Theocharis, M. C. Alexiadis, Long-term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models, Transactions on Energy Conversion, Vol. 21, Jan. 2006, pp.273-284.
DOI: 10.1109/tec.2005.847954
Google Scholar
[5]
M. Alexiadis, P. Dokopoulos, H. Sahsamanoglou, Short term Forecasting of Wind Speed and Related Electrical Power, Solar Energy, Vol. 63, Jan. 1998, pp.61-68.
DOI: 10.1016/s0038-092x(98)00032-2
Google Scholar
[6]
H. Y. Luo, T. Q. Liu. X. Y. Li, Chaotic Forecasting Method of Short-Term Wind Speed in Wind Farm, Power System Technology, Vol. 33, Sep. 2009, pp.67-71.
Google Scholar
[7]
M. Bianchini, P. Frasconi, M. Gori, Learning Without Local Minima In Radial Basis Function Networks, IEEE Transactions Neural Networks, Vol. 6, Mar. 1995, pp.749-756.
DOI: 10.1109/72.377979
Google Scholar
[8]
S. Chen, C. F. Cowan, P. M. Grant, Orthogonal Least Squares Learning Algorithm For Radial Basis Function Networks, IEEE Transactions on Neural Networks, Vol. 2, 1991, pp.302-309.
DOI: 10.1109/72.80341
Google Scholar
[9]
T. Kavli, ASMOD: an Algorithm For Adaptive Splines Modeling Of Observation Data, International Journal of Control, Vol. 58, 1993, pp.947-968.
Google Scholar
[10]
A. R. Barron, X. Xiao, Discussion Of Multivariate Adaptive Regression Splines, Annals of Statistics, Vol. 19, 1991, pp.67-82.
DOI: 10.1214/aos/1176347964
Google Scholar
[11]
S. Chen, E. S. Chng, K. Alkadhimi, Regularized Orthogonal Least Squares Algorithm for Constructing Radial Basis Function Networks, International Journal of Control, Vol. 64, 1996, pp.829-837.
DOI: 10.1080/00207179608921659
Google Scholar
[12]
M. J. Orr, Regularisation in the Selection of Radial Basis Function Centers, Neural Computation, Vol. 7, Mar. 1995, pp.606-623.
DOI: 10.1162/neco.1995.7.3.606
Google Scholar
[13]
S. Y. Chen, Fuzzy Pattern Recognition Model with Cross Iteration and Its Convergence, Journal of Dalian University of Technology, Vol. 41, Mar. 2001, pp.264-267.
Google Scholar
[14]
S. Y. Chen, Theory And Application On Complex Water Resources System Optimization Fuzzy Recognition, Changchun: Jilin University Publishing House, (2002).
Google Scholar
[15]
D. Kugiumtzis, State Space Reconstruction Parameters in the Analysis of Chaotic Time Series-the Role of the Time Window Length, Physica D, Vol. 95, 1996, pp.13-28.
DOI: 10.1016/0167-2789(96)00054-1
Google Scholar
[16]
H. S. Kim, R. Eykholt, J. D. Salas, Nonlinear Dynamics, Delay Times, and Embedding Windows, Physica D, Vol. 127, 1999. pp.48-60.
DOI: 10.1016/s0167-2789(98)00240-1
Google Scholar
[17]
J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press, (1981).
Google Scholar
[18]
G. H. Golub, M. Heath, G. Wahba, Generalised Cross-Validation as a Method for Choosing a Good Ridge Parameter, Technometrics, Vol. 21, Feb. 1979, pp.215-223.
DOI: 10.1080/00401706.1979.10489751
Google Scholar